Mouse

Regulation of autism-relevant behaviors by cerebellar–prefrontal cortical circuits

AbstractCerebellar dysfunction has been demonstrated in autism spectrum disorders (ASDs); however, the circuits underlying cerebellar contributions to ASD-relevant behaviors remain unknown. In this study, we demonstrated functional connectivity between the cerebellum and the medial prefrontal cortex (mPFC) in mice; showed that the mPFC mediates cerebellum-regulated social and repetitive/inflexible behaviors; and showed disruptions in connectivity between these regions in multiple mouse models of ASD-linked genes and in individuals with ASD. We delineated a circuit from cerebellar cortical areas Right crus 1 (Rcrus1) and posterior vermis through the cerebellar nuclei and ventromedial thalamus and culminating in the mPFC. Modulation of this circuit induced social deficits and repetitive behaviors, whereas activation of Purkinje cells (PCs) in Rcrus1 and posterior vermis improved social preference impairments and repetitive/inflexible behaviors, respectively, in male PC-Tsc1 mutant mice. These data raise the possibility that these circuits might provide neuromodulatory targets for the treatment of ASD.

Data availabilityThe authors confirm that all relevant non-MRI data are included in the paper and/or its supplementary information files. Raw MRI data that support the findings of this study are available from the corresponding author upon reasonable request.Code availability

All code is publicly available on GitHub (https://github.com/Mouse-Imaging-Centre/RMINC) or is available upon reasonable request.
References1.D’Mello, A. M. & Stoodley, C. J. Cerebro-cerebellar circuits in autism spectrum disorder. Front. Neurosci. 9, 408 (2015).PubMed 
PubMed Central 

Google Scholar 
2.Fatemi, S. H. et al. Consensus paper: pathological role of the cerebellum in autism. Cerebellum 11, 777–807 (2012).PubMed 
PubMed Central 

Google Scholar 
3.Mosconi, M. W., Wang, Z., Schmitt, L. M., Tsai, P. & Sweeney, J. A. The role of cerebellar circuitry alterations in the pathophysiology of autism spectrum disorders. Front. Neurosci. 9, 296 (2015).PubMed 
PubMed Central 

Google Scholar 
4.Tsai, P. T. Autism and cerebellar dysfunction: evidence from animal models. Semin. Fetal Neonatal Med. 21, 349–355 (2016).5.Tsai, P. T. et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488, 647–651 (2012).CAS 
PubMed 
PubMed Central 

Google Scholar 
6.Pierce, K. & Courchesne, E. Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol. Psychiatry 49, 655–664 (2001).CAS 
PubMed 

Google Scholar 
7.D’Mello, A. M., Crocetti, D., Mostofsky, S. H. & Stoodley, C. J. Cerebellar gray matter and lobular volumes correlate with core autism symptoms. Neuroimage Clin. 7, 631–639 (2015).PubMed 
PubMed Central 

Google Scholar 
8.Stoodley, C. J. et al. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat. Neurosci. 20, 1744–1751 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
9.Krienen, F. M. & Buckner, R. L. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb. Cortex 19, 2485–2497 (2009).PubMed 
PubMed Central 

Google Scholar 
10.Middleton, F. A. & Strick, P. L. Cerebellar projections to the prefrontal cortex of the primate. J. Neurosci. 21, 700–712 (2001).CAS 
PubMed 
PubMed Central 

Google Scholar 
11.Van Overwalle, F. & Marien, P. Functional connectivity between the cerebrum and cerebellum in social cognition: a multi-study analysis. Neuroimage 124, 248–255 (2015).PubMed 

Google Scholar 
12.Watson, T. C., Becker, N., Apps, R. & Jones, M. W. Back to front: cerebellar connections and interactions with the prefrontal cortex. Front. Syst. Neurosci. 8, 4 (2014).PubMed 
PubMed Central 

Google Scholar 
13.Steriade, M. Two channels in the cerebellothalamocortical system. J. Comp. Neurol. 354, 57–70 (1995).CAS 
PubMed 

Google Scholar 
14.Hazlett, H. C. et al. Early brain development in infants at high risk for autism spectrum disorder. Nature 542, 348–351 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
15.Dichter, G. S. Functional magnetic resonance imaging of autism spectrum disorders. Dialogues Clin. Neurosci. 14, 319–351 (2012).PubMed 
PubMed Central 

Google Scholar 
16.Gilbert, S. J., Meuwese, J. D., Towgood, K. J., Frith, C. D. & Burgess, P. W. Abnormal functional specialization within medial prefrontal cortex in high-functioning autism: a multi-voxel similarity analysis. Brain 132, 869–878 (2009).PubMed 
PubMed Central 

Google Scholar 
17.Rogers, T. D. et al. Connecting the dots of the cerebro-cerebellar role in cognitive function: neuronal pathways for cerebellar modulation of dopamine release in the prefrontal cortex. Synapse 65, 1204–1212 (2011).CAS 
PubMed 

Google Scholar 
18.Rogers, T. D. et al. Reorganization of circuits underlying cerebellar modulation of prefrontal cortical dopamine in mouse models of autism spectrum disorder. Cerebellum 12, 547–556 (2013).CAS 
PubMed 

Google Scholar 
19.Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 2322–2345 (2011).PubMed 
PubMed Central 

Google Scholar 
20.Gilbert, S. J., Bird, G., Brindley, R., Frith, C. D. & Burgess, P. W. Atypical recruitment of medial prefrontal cortex in autism spectrum disorders: an fMRI study of two executive function tasks. Neuropsychologia 46, 2281–2291 (2008).PubMed 
PubMed Central 

Google Scholar 
21.Pirone, A. et al. Social stimulus causes aberrant activation of the medial prefrontal cortex in a mouse model with autism-like behaviors. Front. Synaptic Neurosci. 10, 35 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
22.Kobayashi, M., Hayashi, Y., Fujimoto, Y. & Matsuoka, I. Decreased parvalbumin and somatostatin neurons in medial prefrontal cortex in BRINP1-KO mice. Neurosci. Lett. 683, 82–88 (2018).CAS 
PubMed 

Google Scholar 
23.Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).CAS 
PubMed 
PubMed Central 

Google Scholar 
24.Selimbeyoglu, A. et al. Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in CNTNAP2-deficient mice. Sci. Transl. Med. 9, eaah6733 (2017).25.Alexander-Bloch, A., Giedd, J. N. & Bullmore, E. Imaging structural co-variance between human brain regions. Nat. Rev. Neurosci. 14, 322–336 (2013).CAS 
PubMed 
PubMed Central 

Google Scholar 
26.Baribeau, D. A. et al. Structural neuroimaging correlates of social deficits are similar in autism spectrum disorder and attention-deficit/hyperactivity disorder: analysis from the POND. Netw. Transl. Psychiatry 9, 72 (2019).
Google Scholar 
27.Jansen, J. & Brodal, A.Experimental studies on the intrinsic fibers of the cerebellum II. The cortico-nuclear projection. Cerebellum 10, 126–180 (1940).
Google Scholar 
28.Zingg, B. et al. AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron 93, 33–47 (2017).CAS 
PubMed 

Google Scholar 
29.Kuramoto, E. et al. Ventral medial nucleus neurons send thalamocortical afferents more widely and more preferentially to layer 1 than neurons of the ventral anterior-ventral lateral nuclear complex in the rat. Cereb. Cortex 25, 221–235 (2015).PubMed 

Google Scholar 
30.Mitchell, B. D. & Cauller, L. J. Corticocortical and thalamocortical projections to layer I of the frontal neocortex in rats. Brain Res. 921, 68–77 (2001).CAS 
PubMed 

Google Scholar 
31.Urbain, N., Fourcaud-Trocme, N., Laheux, S., Salin, P. A. & Gentet, L. J. Brain-state-dependent modulation of neuronal firing and membrane potential dynamics in the somatosensory thalamus during natural sleep. Cell Rep. 26, 1443–1457 (2019).CAS 
PubMed 

Google Scholar 
32.Badura, A. et al. Normal cognitive and social development require posterior cerebellar activity. eLife. 7, e36401 (2018).33.Srivastava, S. et al. Volumetric analysis of the basal ganglia and cerebellar structures in patients with Phelan–McDermid syndrome. Pediatr. Neurol. 90, 37–43 (2019).PubMed 

Google Scholar 
34.Courville, J. & Diakiw, N. Cerebellar corticonuclear projection in the cat. The vermis of the anterior and posterior lobes. Brain Res. 110, 1–20 (1976).CAS 
PubMed 

Google Scholar 
35.Groenewegen, H. J. Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience 24, 379–431 (1988).CAS 
PubMed 

Google Scholar 
36.Haroian, A. J., Massopust, L. C. & Young, P. A. Cerebellothalamic projections in the rat: an autoradiographic and degeneration study. J. Comp. Neurol. 197, 217–236 (1981).CAS 
PubMed 

Google Scholar 
37.Rubenstein, J. L. & Merzenich, M. M. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2, 255–267 (2003).CAS 
PubMed 
PubMed Central 

Google Scholar 
38.Takarae, Y. & Sweeney, J. Neural hyperexcitability in autism spectrum disorders. Brain Sci. 7, 129 (2017).39.Contractor, A., Klyachko, V. A. & Portera-Cailliau, C. Altered neuronal and circuit excitability in fragile X syndrome. Neuron 87, 699–715 (2015).CAS 
PubMed 
PubMed Central 

Google Scholar 
40.Sohal, V. S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009).CAS 
PubMed 
PubMed Central 

Google Scholar 
41.Mouginot, D. & Gahwiler, B. H. Characterization of synaptic connections between cortex and deep nuclei of the rat cerebellum in vitro. Neuroscience 64, 699–712 (1995).CAS 
PubMed 

Google Scholar 
42.Ryu, Y. H. et al. Perfusion impairments in infantile autism on technetium-99m ethyl cysteinate dimer brain single-photon emission tomography: comparison with findings on magnetic resonance imaging. Eur. J. Nucl. Med. 26, 253–259 (1999).CAS 
PubMed 

Google Scholar 
43.Carta, I., Chen, C. H., Schott, A. L., Dorizan, S. & Khodakhah, K. Cerebellar modulation of the reward circuitry and social behavior. Science 363, eaav0581 (2019).44.Bicks, L. K., Koike, H., Akbarian, S. & Morishita, H. Prefrontal cortex and social cognition in mouse and man. Front. Psychol. 6, 1805 (2015).PubMed 
PubMed Central 

Google Scholar 
45.Popa, L. S. & Ebner, T. J. Cerebellum, predictions and errors. Front. Cell Neurosci. 12, 524 (2018).PubMed 

Google Scholar 
46.Carmi, L. et al. Clinical and electrophysiological outcomes of deep TMS over the medial prefrontal and anterior cingulate cortices in OCD patients. Brain Stimulation 11, 158–165 (2018).PubMed 

Google Scholar 
47.van Dun, K., Bodranghien, F., Manto, M. & Marien, P. Targeting the cerebellum by noninvasive neurostimulation: a review. Cerebellum 16, 695–741 (2017).PubMed 

Google Scholar 
48.Parker, K. L. et al. Delta-frequency stimulation of cerebellar projections can compensate for schizophrenia-related medial frontal dysfunction. Mol. Psychiatry 22, 647–655 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
49.Brady, R. O., Jr. et al. Cerebellar-prefrontal network connectivity and negative symptoms in schizophrenia. Am. J. Psychiatry 176, 512–520 (2019).50.Tsai, P. T. et al. Sensitive periods for cerebellar-mediated autistic-like behaviors. Cell Rep. 25, 357–367 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
51.Barski, J. J., Dethleffsen, K. & Meyer, M. Cre recombinase expression in cerebellar Purkinje cells. Genesis 28, 93–98 (2000).CAS 
PubMed 

Google Scholar 
52.Kwiatkowski, D. J. et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum. Mol. Genet. 11, 525–534 (2002).CAS 
PubMed 

Google Scholar 
53.Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2009).54.Paxinos, G. & Franklin, K. Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates 4th edn (Academic Press, 2012).55.Watson, C., Paxinos, G. & Puelles, L. The Mouse Nervous System (Academic Press, 2011).56.Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).PubMed 

Google Scholar 
57.Cahill, L. S. et al. Preparation of fixed mouse brains for MRI. Neuroimage 60, 933–939 (2012).PubMed 

Google Scholar 
58.Lerch, J. P., Sled, J. G. & Henkelman, R. M. MRI phenotyping of genetically altered mice. Methods Mol. Biol. 711, 349–361 (2011).CAS 
PubMed 

Google Scholar 
59.Nieman, B. J. et al. MR technology for biological studies in mice. NMR Biomed. 20, 291–303 (2007).PubMed 

Google Scholar 
60.Nieman, B. J. et al. Magnetic resonance imaging for detection and analysis of mouse phenotypes. NMR Biomed. 18, 447–468 (2005).PubMed 

Google Scholar 
61.Nieman, B. J., Flenniken, A. M., Adamson, S. L., Henkelman, R. M. & Sled, J. G. Anatomical phenotyping in the brain and skull of a mutant mouse by magnetic resonance imaging and computed tomography. Physiological Genomics 24, 154–162 (2006).CAS 
PubMed 

Google Scholar 
62.Dazai, J. et al. Multiple mouse biological loading and monitoring system for MRI. Magn. Reson. Med. 52, 709–715 (2004).PubMed 

Google Scholar 
63.Dazai, J., Spring, S., Cahill, L. S. & Henkelman, R. M. Multiple-mouse neuroanatomical magnetic resonance imaging. J. Vis. Exp. 48, 2497 (2011).64.Thomas, D. L. et al. High-resolution fast spin echo imaging of the human brain at 4.7T: implementation and sequence characteristics. Magn. Reson. Med. 51, 1254–1264 (2004).PubMed 
PubMed Central 

Google Scholar 
65.Nieman, B. J. et al. Fast spin-echo for multiple mouse magnetic resonance phenotyping. Magn. Reson. Med. 54, 532–537 (2005).PubMed 

Google Scholar 
66.Dorr, A. E., Lerch, J. P., Spring, S., Kabani, N. & Henkelman, R. M. High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice. Neuroimage 42, 60–69 (2008).CAS 
PubMed 

Google Scholar 
67.Richards, K. et al. Segmentation of the mouse hippocampal formation in magnetic resonance images. Neuroimage 58, 732–740 (2011).PubMed 

Google Scholar 
68.Steadman, P. E. et al. Genetic effects on cerebellar structure across mouse models of autism using a magnetic resonance imaging atlas. Autism Res. 7, 124–137 (2014).PubMed 

Google Scholar 
69.Ullmann, J. F., Watson, C., Janke, A. L., Kurniawan, N. D. & Reutens, D. C. A segmentation protocol and MRI atlas of the C57BL/6J mouse neocortex. Neuroimage 78, 196–203 (2013).PubMed 

Google Scholar 
70.Chakravarty, M. M. et al. Performing label-fusion-based segmentation using multiple automatically generated templates. Hum. Brain Mapp. 34, 2635–2654 (2013).PubMed 

Google Scholar 
71.Park, M. T. et al. Derivation of high-resolution MRI atlases of the human cerebellum at 3T and segmentation using multiple automatically generated templates. Neuroimage 95, 217–231 (2014).PubMed 

Google Scholar 
72.Kim, J. S. et al. Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 27, 210–221 (2005).PubMed 

Google Scholar 
73.Lerch, J. P. & Evans, A. C. Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage 24, 163–173 (2005).PubMed 

Google Scholar 
74.Lyttelton, O., Boucher, M., Robbins, S. & Evans, A. An unbiased iterative group registration template for cortical surface analysis. Neuroimage 34, 1535–1544 (2007).PubMed 

Google Scholar 
75.Reardon, P. K. et al. Normative brain size variation and brain shape diversity in humans. Science 360, 1222–1227 (2018).CAS 
PubMed 

Google Scholar 
76.Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).CAS 
PubMed 
PubMed Central 

Google Scholar 
77.Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18, 1213–1225 (2015).CAS 
PubMed 
PubMed Central 

Google Scholar 
78.Holmes, A. et al. Behavioral characterization of dopamine D5 receptor null mutant mice. Behav. Neurosci. 115, 1129 (2001).CAS 
PubMed 

Google Scholar 
79.Buitrago, M. M., Schulz, J. B., Dichgans, J. & Luft, A. R. Short and long-term motor skill learning in an accelerated rotarod training paradigm. Neurobiol. Learn. Mem. 81, 211–216 (2004).PubMed 

Google Scholar 
80.Yang, M., Silverman, J. L. & Crawley, J. N. Automated three-chambered social approach task for mice. Curr. Protoc. Neurosci. 56, 8.26.21–28.26.16 (2011).
Google Scholar 
81.Silverman, J. L. et al. Sociability and motor functions in Shank1 mutant mice. Brain Res. 1380, 120–137 (2011).CAS 
PubMed 

Google Scholar 
82.Yang, M. & Crawley, J. N. Simple behavioral assessment of mouse olfaction. Curr. Protoc. Neurosci. 48, 8.24.1–8.24.12 (2009).
Google Scholar 
83.Bednar, I. et al. Selective nicotinic receptor consequences in APPSWE transgenic mice. Mol. Cell. Neurosci. 20, 354–365 (2002).CAS 
PubMed 

Google Scholar 
Download referencesAcknowledgementsP.T.T. acknowledges support from the National Institute of Neurologic Disorders and Stroke (NS083733), the National Institute of Mental Health (MH116882), the Tuberous Sclerosis Alliance and the Department of Defense. E.K. acknowledges support from National Institute of Neurologic Disorders and Stroke (NS107004) and Autism Speaks. H.F. and S.d.L. acknowledge support from the National Institute of Neurologic Disorders and Stroke (NS095232 and NS105039). F. Morgado, J.E. and J.P.L. acknowledge support from the Canadian Institute for Health Research and the Ontario Brain Institute. L.C.R and C.J.S. acknowledge support from the National Institute for Health (MH106957). M.A.B. acknowledges support from the Medical Research Council (MR/K022377/1). N.K. acknowledges support from the National Institute of Mental Health (MH094268) and declares that he is a paid consultant for Rescindo Therapeutics, although this does not provide a competing interest with this study. P.T.T. and E.K. acknowledge support from V. Jakkamsetti and J. Pascual for support with in vivo extracellular and acute slice recordings recordings and analysis; S. Birnbaum for assistance in behavioral studies; G. Konopka, C. Powell, L. Osburne, J. Foster, J. Lai, K. Rilett, E. Kim and A. Raznahan for generous provision of animal models; and J. Chadwick for graphics assistance.Author informationAffiliationsDepartment of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USAElyza Kelly, Fantao Meng, Yasaman Kazemi, Chongyu Ren, Christine Ochoa Escamilla, Jennifer M. Gibson, Sanaz Sajadi, Tommy Tan & Peter T. TsaiDepartment of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USAElyza Kelly, Jennifer M. Gibson, Robert J. Pendry, Brad E. Pfeiffer & Peter T. TsaiDepartments of Otolaryngology-Head and Neck Surgery, Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USAHirofumi Fujita & Sascha du LacDepartment of Medical Biophysics, University of Toronto, Toronto, ON, CanadaFelipe Morgado & Jason P. LerchMouse Imaging Centre, Toronto Hospital for Sick Children, Toronto, ON, CanadaFelipe Morgado, Jacob Ellegood, Christopher Hammill & Jason P. LerchDepartment of Neuroscience, Center for Behavioral Neuroscience, American University, Washington, DC, USALaura C. Rice & Catherine J. StoodleyCentre for Craniofacial and Regenerative Biology and MRC Centre for Neurodevelopmental Disorders, Kingʼs College London, London, UKM. Albert BassonDepartment of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida, USARandy D. Blakely & Maureen K. HahnDepartment of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USAScott V. DindotInstitut de Génétique et de Biologie Moléculaire et Cellulaire; Centre National de la Recherche Scientifique; Institut National de la Santé et de la Recherche Médicale; Université de Strasbourg, Illkirch, FranceChristelle GolzioACT-GeM, Department of Human Genetics at Stanley Manne Children’s Research Institute; Department of Pediatrics and Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USANicholas KatsanisDepartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USADiane M. RobinsMIND Institute and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA, USAJill L. SilvermanDepartment of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, CanadaKarun K. SinghDepartment of Medical Genetics, University of Alberta, Edmonton, AB, CanadaRachel WevrickDepartment of Medical Imaging and Psychology, University of Toronto; Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, USAMargot J. TaylorDepartment of Pediatrics, University of Toronto, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, USAEvdokia AnagnostouWellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UKJason P. LerchDepartments of Psychiatry and Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USAPeter T. TsaiContributionsE.K., F. Meng, H. F., J.P.L., S.d.L. and P.T.T. formulated experiments and analysis. E.K., F. Meng, H.F., Y.K., C.O.E., J.M.G., S.S., C.R., D.J., R.P., T.T. and B.E.P. performed experiments and analysis. F. Morgado, J.E. and J.P.L. carried out the mouse structural imaging experiments and analysis. F. Morgado, J.E., M.J.T, C.H., E.A. and J.P.L. carried out the human structural imaging experiments and analysis. L.C.R. and C.J.S. performed functional imaging in humans and analysis of these studies. M.A.B., R.D.B., S.D., C.G., M.K.H., N.K., D.M.R., J.L.S, K.K.S. and R.W. provided critical reagents. E.K., H.F., J.P.L., S.d.L. and P.T.T. prepared the manuscript.Corresponding authorCorrespondence to
Peter T. Tsai.Ethics declarations

Competing interests
The authors declare no competing interests.

Additional informationPeer review information Nature Neuroscience thanks Ted Abel, Sarah Ferri and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 mPFC Gi DREADDs in PC-Tsc1 mutant mice.a, Sample of injection site locations from PC-Tsc1 mutants injected with Gi (inhibitory) DREADDs/GFP into left prelimbic (PRL) medial prefrontal cortex (mPFC). b, Awake in vivo single unit recordings in the left PRL of control or PC- Tsc1 mutant mice. c, Three chambered social approach assay; time spent sniffing novel animal (NA), or novel object (NO). d, Three chambered social novelty testing; time spent sniffing NA or familiar animal (FA). e, Time in the open arm and distance traveled in the elevated plus maze assay. f, Time in the center of the open field and g, distance traveled in the open field. h, Latency to fall in accelerating rotarod test. Box line denoted median/whiskers denoted 5–95%. n ≥ 10 for all experiments. All behavioral tests were analyzed with two or three-way ANOVA and Sidak post test and single unit recordings were analyzed with Mann-Whitney test, shown as mean SEM. ****P 
Read More

Show More

Related Articles

Leave a Reply

Your email address will not be published.

Back to top button
Close
Close