Ferret

Improving human cancer therapy through the evaluation of pet dogs

1.LeBlanc, A. K. et al. Perspectives from man’s best friend: National Academy of Medicine’s Workshop on Comparative Oncology. Sci. Transl Med. 8, 324ps325 (2016).
Google Scholar 
2.Khanna, C., London, C., Vail, D., Mazcko, C. & Hirschfeld, S. Guiding the optimal translation of new cancer treatments from canine to human cancer patients. Clin. Cancer Res. 15, 5671–5677 (2009).PubMed 
PubMed Central 

Google Scholar 
3.Burton, J. & Khanna, C. The role of clinical trials in veterinary oncology. Vet. Clin. North Am. Small Anim. Pract. 44, 977–987 (2014).PubMed 

Google Scholar 
4.Alvarez, C. E. Naturally occurring cancers in dogs: insights for translational genetics and medicine. ILAR J. 55, 16–45 (2014).CAS 
PubMed 

Google Scholar 
5.Duran-Struuck, R., Huang, C. A. & Matar, A. J. Cellular therapies for the treatment of hematological malignancies; swine are an ideal preclinical model. Front. Oncol. 9, 418 (2019).PubMed 
PubMed Central 

Google Scholar 
6.Johnson, P. A. & Giles, J. R. The hen as a model of ovarian cancer. Nat. Rev. Cancer 13, 432–436 (2013).CAS 
PubMed 

Google Scholar 
7.van der Weyden, L. et al. Cross-species models of human melanoma. J. Pathol. 238, 152–165 (2016).PubMed 

Google Scholar 
8.van Zeeland, Y. Rabbit oncology: diseases, diagnostics, and therapeutics. Vet. Clin. North Am. Exot. Anim. Pract. 20, 135–182 (2017).PubMed 

Google Scholar 
9.Schachtschneider, K. M. et al. Oncopig soft-tissue sarcomas recapitulate key transcriptional features of human sarcomas. Sci. Rep. 7, 2624 (2017).PubMed 
PubMed Central 

Google Scholar 
10.Schoemaker, N. J. Ferret oncology: diseases, diagnostics, and therapeutics. Vet. Clin. North Am. Exot. Anim. Pract. 20, 183–208 (2017).PubMed 

Google Scholar 
11.Schiffman, J. D. & Breen, M. Comparative oncology: what dogs and other species can teach us about humans with cancer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140231 (2015).PubMed 
PubMed Central 

Google Scholar 
12.Cannon, C. M. Cats, cancer and comparative oncology. Vet. Sci. 2, 111–126 (2015).PubMed 
PubMed Central 

Google Scholar 
13.Gustafson, D. L., Duval, D. L., Regan, D. P. & Thamm, D. H. Canine sarcomas as a surrogate for the human disease. Pharmacol. Ther. 188, 80–96 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
14.Gardner, H. L., Fenger, J. M. & London, C. A. Dogs as a model for cancer. Annu. Rev. Anim. Biosci. 4, 199–222 (2016).CAS 
PubMed 

Google Scholar 
15.Gordon, I., Paoloni, M., Mazcko, C. & Khanna, C. The comparative oncology trials consortium: using spontaneously occurring cancers in dogs to inform the cancer drug development pathway. PLoS Med. 6, e1000161 (2009).PubMed 
PubMed Central 

Google Scholar 
16.Barutello, G. et al. Strengths and weaknesses of pre-clinical models for human melanoma treatment: dawn of dogs’ revolution for immunotherapy. Int. J. Mol. Sci. 19, 799 (2018).PubMed Central 

Google Scholar 
17.Tarone, L. et al. Naturally occurring cancers in pet dogs as pre-clinical models for cancer immunotherapy. Cancer Immunol. Immunother. 68, 1839–1853 (2019).PubMed 

Google Scholar 
18.Garden, O. A., Volk, S. W., Mason, N. J. & Perry, J. A. Companion animals in comparative oncology: One Medicine in action. Vet. J. 240, 6–13 (2018).CAS 
PubMed 

Google Scholar 
19.Page, R. et al. Conduct, oversight, and ethical considerations of clinical trials in companion animals with cancer: report of a workshop on best practice recommendations. J. Vet. Intern. Med. 30, 527–535 (2016).CAS 
PubMed 
PubMed Central 

Google Scholar 
20.Paoloni, M. & Khanna, C. Translation of new cancer treatments from pet dogs to humans. Nat. Rev. Cancer 8, 147–156 (2008).CAS 
PubMed 

Google Scholar 
21.LeBlanc, A. K., Mazcko, C. N. & Khanna, C. Defining the value of a comparative approach to cancer drug development. Clin. Cancer Res. 22, 2133–2138 (2016).CAS 
PubMed 

Google Scholar 
22.Paoloni, M. C. et al. Launching a novel preclinical infrastructure: comparative oncology trials consortium directed therapeutic targeting of TNFα to cancer vasculature. PLoS ONE 4, e4972 (2009).PubMed 
PubMed Central 

Google Scholar 
23.Thamm, D. H. Canine cancer: strategies in experimental therapeutics. Front. Oncol. 9, 1257 (2019).PubMed 
PubMed Central 

Google Scholar 
24.Pryer, N. K. et al. Proof of target for SU11654: inhibition of KIT phosphorylation in canine mast cell tumors. Clin. Cancer Res. 9, 5729–5734 (2003).CAS 
PubMed 

Google Scholar 
25.Khanna, C. & Gordon, I. Catching cancer by the tail: new perspectives on the use of kinase inhibitors. Clin. Cancer Res. 15, 3645–3647 (2009).CAS 
PubMed 

Google Scholar 
26.Liao, A. T. et al. Inhibition of constitutively active forms of mutant kit by multitargeted indolinone tyrosine kinase inhibitors. Blood 100, 585–593 (2002).CAS 
PubMed 

Google Scholar 
27.London, C. A. et al. Phase I dose-escalating study of SU11654, a small molecule receptor tyrosine kinase inhibitor, in dogs with spontaneous malignancies. Clin. Cancer Res. 9, 2755–2768 (2003).CAS 
PubMed 

Google Scholar 
28.Lin, T. Y. et al. The novel HSP90 inhibitor STA-9090 exhibits activity against Kit-dependent and -independent malignant mast cell tumors. Exp. Hematol. 36, 1266–1277 (2008).CAS 
PubMed 

Google Scholar 
29.London, C. A. et al. KTN0158, a humanized anti-KIT monoclonal antibody, demonstrates biologic activity against both normal and malignant canine mast cells. Clin. Cancer Res. 23, 2565–2574 (2017).CAS 
PubMed 

Google Scholar 
30.Davis, B. W. & Ostrander, E. A. Domestic dogs and cancer research: a breed-based genomics approach. ILAR J. 55, 59–68 (2014).CAS 
PubMed 
PubMed Central 

Google Scholar 
31.Lindblad-Toh, K. et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438, 803–819 (2005). This work presents the first comprehensive description and annotation of the canine genome, which enables further study in canine comparative genomics.CAS 

Google Scholar 
32.Ostrander, E. A., Dreger, D. L. & Evans, J. M. Canine cancer genomics: lessons for canine and human health. Annu. Rev. Anim. Biosci. 7, 449–472 (2019).CAS 
PubMed 

Google Scholar 
33.Ostrander, E. A. et al. Dog10K: an international sequencing effort to advance studies of canine domestication, phenotypes and health. Natl Sci. Rev. 6, 810–824 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
34.Megquier, K. et al. BarkBase: epigenomic annotation of canine genomes. Genes 10, 433 (2019).CAS 
PubMed Central 

Google Scholar 
35.Paoloni, M. et al. Prospective molecular profiling of canine cancers provides a clinically relevant comparative model for evaluating personalized medicine (PMed) trials. PLoS ONE 9, e90028 (2014).PubMed 
PubMed Central 

Google Scholar 
36.London, C. A. et al. Impact of toceranib/piroxicam/cyclophosphamide maintenance therapy on outcome of dogs with appendicular osteosarcoma following amputation and carboplatin chemotherapy: a multi-institutional study. PLoS ONE 10, e0124889 (2015).PubMed 
PubMed Central 

Google Scholar 
37.Turner, H. et al. Prognosis for dogs with stage III osteosarcoma following treatment with amputation and chemotherapy with and without metastasectomy. J. Am. Vet. Med. Assoc. 251, 1293–1305 (2017).PubMed 

Google Scholar 
38.Bishop, M. W., Janeway, K. A. & Gorlick, R. Future directions in the treatment of osteosarcoma. Curr. Opin. Pediatr. 28, 26–33 (2016).CAS 
PubMed 
PubMed Central 

Google Scholar 
39.Lagmay, J. P. et al. Outcome of patients with recurrent osteosarcoma enrolled in seven phase II trials through children’s cancer group, pediatric oncology group, and children’s oncology group: learning from the past to move forward. J. Clin. Oncol. 34, 3031–3038 (2016).PubMed 
PubMed Central 

Google Scholar 
40.Selmic, L. E., Burton, J. H., Thamm, D. H., Withrow, S. J. & Lana, S. E. Comparison of carboplatin and doxorubicin-based chemotherapy protocols in 470 dogs after amputation for treatment of appendicular osteosarcoma. J. Vet. Intern. Med. 28, 554–563 (2014).CAS 
PubMed 
PubMed Central 

Google Scholar 
41.Roberts, R. D. et al. Provocative questions in osteosarcoma basic and translational biology: a report from the Children’s Oncology Group. Cancer 125, 3514–3525 (2019).PubMed 

Google Scholar 
42.Fenger, J. M., London, C. A. & Kisseberth, W. C. Canine osteosarcoma: a naturally occurring disease to inform pediatric oncology. ILAR J. 55, 69–85 (2014).CAS 
PubMed 

Google Scholar 
43.Grohar, P. J., Janeway, K. A., Mase, L. D. & Schiffman, J. D. Advances in the treatment of pediatric bone sarcomas. Am. Soc. Clin. Oncol. Educ. Book 37, 725–735 (2017).PubMed 
PubMed Central 

Google Scholar 
44.Paoloni, M. et al. Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression. BMC Genomics 10, 625 (2009). This comparative array-based assessment of gene expression shows that canine and human osteosarcomas are indistinguishable from each other from a transcriptomic standpoint, and that canine osteosarcoma could inform novel gene and target discovery in human osteosarcoma.PubMed 
PubMed Central 

Google Scholar 
45.Angstadt, A. Y. et al. Characterization of canine osteosarcoma by array comparative genomic hybridization and RT-qPCR: signatures of genomic imbalance in canine osteosarcoma parallel the human counterpart. Genes Chromosomes Cancer 50, 859–874 (2011).CAS 
PubMed 

Google Scholar 
46.Angstadt, A. Y., Thayanithy, V., Subramanian, S., Modiano, J. F. & Breen, M. A genome-wide approach to comparative oncology: high-resolution oligonucleotide aCGH of canine and human osteosarcoma pinpoints shared microaberrations. Cancer Genet. 205, 572–587 (2012).CAS 
PubMed 

Google Scholar 
47.Scott, M. C. et al. Molecular subtypes of osteosarcoma identified by reducing tumor heterogeneity through an interspecies comparative approach. Bone 49, 356–367 (2011).CAS 
PubMed 
PubMed Central 

Google Scholar 
48.Gröbner, S. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).PubMed 

Google Scholar 
49.Gardner, H. L. et al. Canine osteosarcoma genome sequencing identifies recurrent mutations in DMD and the histone methyltransferase gene SETD2. Commun. Biol. 2, 266 (2019). This study provides a comprehensive whole-genome, whole-exome and transcriptomic assessment of canine osteosarcoma, providing further evidence of similarities between human and canine osteosarcomas.PubMed 
PubMed Central 

Google Scholar 
50.Chen, X. et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 7, 104–112 (2014).CAS 
PubMed 
PubMed Central 

Google Scholar 
51.Shao, Y. W. et al. Cross-species genomics identifies DLG2 as a tumor suppressor in osteosarcoma. Oncogene 38, 291–298 (2019).CAS 
PubMed 

Google Scholar 
52.Sakthikumar, S. et al. SETD2 is recurrently mutated in whole-exome sequenced canine osteosarcoma. Cancer Res. 78, 3421–3431 (2018).CAS 
PubMed 

Google Scholar 
53.Perry, J. A. et al. Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc. Natl Acad. Sci. USA 111, E5564–E5573 (2014).CAS 
PubMed 

Google Scholar 
54.Roy, J., Wycislo, K. L., Pondenis, H., Fan, T. M. & Das, A. Comparative proteomic investigation of metastatic and non-metastatic osteosarcoma cells of human and canine origin. PLoS ONE 12, e0183930 (2017).PubMed 
PubMed Central 

Google Scholar 
55.Kovac, M. et al. Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat. Commun. 6, 8940 (2015).CAS 
PubMed 
PubMed Central 

Google Scholar 
56.Gulhan, D. C., Lee, J. J., Melloni, G. E. M., Cortes-Ciriano, I. & Park, P. J. Detecting the mutational signature of homologous recombination deficiency in clinical samples. Nat. Genet. 51, 912–919 (2019).CAS 
PubMed 

Google Scholar 
57.Withers, S. S. et al. Metastatic immune infiltrates correlate with those of the primary tumour in canine osteosarcoma. Vet. Comp. Oncol. 17, 242–252 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
58.Sorenson, L., Fu, Y., Hood, T., Warren, S. & McEachron, T. A. Targeted transcriptional profiling of the tumor microenvironment reveals lymphocyte exclusion and vascular dysfunction in metastatic osteosarcoma. Oncoimmunology 8, e1629779 (2019).PubMed 
PubMed Central 

Google Scholar 
59.Wu, C. C. et al. Immuno-genomic landscape of osteosarcoma. Nat. Commun. 11, 1008 (2020).CAS 
PubMed 
PubMed Central 

Google Scholar 
60.Bergman, P. J. Cancer immunotherapies. Vet. Clin. North Am. Small Anim. Pract. 49, 881–902 (2019).PubMed 

Google Scholar 
61.Maekawa, N. et al. A canine chimeric monoclonal antibody targeting PD-L1 and its clinical efficacy in canine oral malignant melanoma or undifferentiated sarcoma. Sci. Rep. 7, 8951 (2017).PubMed 
PubMed Central 

Google Scholar 
62.Endo-Munoz, L. et al. Auranofin improves overall survival when combined with standard of care in a pilot study involving dogs with osteosarcoma. Vet. Comp. Oncol. 18, 206–213 (2020).CAS 
PubMed 

Google Scholar 
63.Mason, N. J. et al. Immunotherapy with a HER2-targeting listeria induces HER2-specific immunity and demonstrates potential therapeutic effects in a phase I trial in canine osteosarcoma. Clin. Cancer Res. 22, 4380–4390 (2016).CAS 
PubMed 

Google Scholar 
64.Sayles, L. C. et al. Genome-informed targeted therapy for osteosarcoma. Cancer Discov. 9, 46–63 (2019).CAS 
PubMed 

Google Scholar 
65.Richards, K. L. & Suter, S. E. Man’s best friend: what can pet dogs teach us about non-Hodgkin’s lymphoma? Immunol. Rev. 263, 173–191 (2015).PubMed 
PubMed Central 

Google Scholar 
66.Marconato, L. et al. Conformity and controversies in the diagnosis, staging and follow-up evaluation of canine nodal lymphoma: a systematic review of the last 15 years of published literature. Vet. Comp. Oncol. 15, 1029–1040 (2017).CAS 
PubMed 

Google Scholar 
67.Cozzi, M. et al. Canine nodal marginal zone lymphoma: descriptive insight into the biological behaviour. Vet. Comp. Oncol. 16, 246–252 (2018).CAS 
PubMed 

Google Scholar 
68.Davies, O. et al. Prognostic significance of clinical presentation, induction and rescue treatment in 42 cases of canine centroblastic diffuse large B-cell multicentric lymphoma in the United Kingdom. Vet. Comp. Oncol. 16, 276–287 (2018).CAS 
PubMed 

Google Scholar 
69.Dias, J. N. R. et al. Canine multicentric lymphoma exhibits systemic and intratumoral cytokine dysregulation. Vet. Immunol. Immunopathol. 218, 109940 (2019).CAS 
PubMed 

Google Scholar 
70.Ewing, T. S., Pieper, J. B. & Stern, A. W. Prevalence of CD20+ cutaneous epitheliotropic T-cell lymphoma in dogs: a retrospective analysis of 24 cases (2011–2018) in the USA. Vet. Dermatol. 30, 51-e14 (2019).PubMed 

Google Scholar 
71.Ito, D., Frantz, A. M. & Modiano, J. F. Canine lymphoma as a comparative model for human non-Hodgkin lymphoma: recent progress and applications. Vet. Immunol. Immunopathol. 159, 192–201 (2014).CAS 
PubMed 
PubMed Central 

Google Scholar 
72.Seelig, D. M., Avery, A. C., Ehrhart, E. J. & Linden, M. A. The comparative diagnostic features of canine and human lymphoma. Vet. Sci. 3, 11 (2016).PubMed 
PubMed Central 

Google Scholar 
73.Modiano, J. F., Breen, M., Valli, V. E., Wojcieszyn, J. W. & Cutter, G. R. Predictive value of p16 or Rb inactivation in a model of naturally occurring canine non-Hodgkin’s lymphoma. Leukemia 21, 184–187 (2007).CAS 
PubMed 

Google Scholar 
74.Morton, L. M. et al. Lymphoma incidence patterns by WHO subtype in the United States, 1992–2001. Blood 107, 265–276 (2006).CAS 
PubMed 
PubMed Central 

Google Scholar 
75.DeWeerdt, S. How dogs are teaching researchers new tricks for treating cancer. Nature 563, S50–S51 (2018).CAS 
PubMed 

Google Scholar 
76.Wolf-Ringwall, A. et al. Prospective evaluation of flow cytometric characteristics, histopathologic diagnosis and clinical outcome in dogs with naive B-cell lymphoma treated with a 19-week CHOP protocol. Vet. Comp. Oncol. 18, 342–352 (2020).CAS 
PubMed 

Google Scholar 
77.Burton, J. H. et al. NCI Comparative Oncology Program testing of non-camptothecin indenoisoquinoline topoisomerase I inhibitors in naturally occurring canine lymphoma. Clin. Cancer Res. 24, 5830–5840 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
78.Yamazaki, H. et al. Effects of toceranib phosphate (Palladia) monotherapy on multidrug resistant lymphoma in dogs. J. Vet. Med. Sci. 7, 1225–1229 (2017).
Google Scholar 
79.London, C. A. et al. Phase I evaluation of STA-1474, a prodrug of the novel HSP90 inhibitor ganetespib, in dogs with spontaneous cancer. PLoS ONE 6, e27018 (2011).CAS 
PubMed 
PubMed Central 

Google Scholar 
80.Habineza Ndikuyeze, G. et al. A phase I clinical trial of systemically delivered NEMO binding domain peptide in dogs with spontaneous activated B-cell like diffuse large B-cell lymphoma. PLoS ONE 9, e95404 (2014).PubMed 
PubMed Central 

Google Scholar 
81.Honigberg, L. A. et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl Acad. Sci. USA 107, 13075–13080 (2010).CAS 
PubMed 

Google Scholar 
82.Vail, D. M. et al. Assessment of GS-9219 in a pet dog model of non-Hodgkin’s lymphoma. Clin. Cancer Res. 15, 3503–3510 (2009).CAS 
PubMed 

Google Scholar 
83.Dias, J. N. R. et al. The histone deacetylase inhibitor panobinostat is a potent antitumor agent in canine diffuse large B-cell lymphoma. Oncotarget 9, 28586–28598 (2018).PubMed 
PubMed Central 

Google Scholar 
84.Kalakonda, N. et al. Selinexor in patients with relapsed or refractory diffuse large B-cell lymphoma (SADAL): a single-arm, multinational, multicentre, open-label, phase 2 trial. Lancet Haematol. 7, e511–e522 (2020).PubMed 

Google Scholar 
85.Sadowski, A. R. et al. Phase II study of the oral selective inhibitor of nuclear export (SINE) KPT-335 (verdinexor) in dogs with lymphoma. BMC Vet. Res. 14, 250 (2018).PubMed 
PubMed Central 

Google Scholar 
86.London, C. A. et al. Preclinical evaluation of the novel, orally bioavailable selective inhibitor of nuclear export (SINE) KPT-335 in spontaneous canine cancer: results of a phase I study. PLoS ONE 9, e87585 (2014).PubMed 
PubMed Central 

Google Scholar 
87.Thomas, R. et al. Refining tumor-associated aneuploidy through ‘genomic recoding’ of recurrent DNA copy number aberrations in 150 canine non-Hodgkin lymphomas. Leuk. Lymphoma 52, 1321–1335 (2011).PubMed 
PubMed Central 

Google Scholar 
88.Ferraresso, S. et al. DNA methylation profiling reveals common signatures of tumorigenesis and defines epigenetic prognostic subtypes of canine diffuse large B-cell lymphoma. Sci. Rep. 7, 11591 (2017).PubMed 
PubMed Central 

Google Scholar 
89.Gaurnier-Hausser, A. & Mason, N. J. Assessment of canonical NF-κB activity in canine diffuse large B-cell lymphoma. Methods Mol. Biol. 1280, 469–504 (2015).CAS 
PubMed 

Google Scholar 
90.Seelig, D. M. et al. Constitutive activation of alternative nuclear factor κB pathway in canine diffuse large B-cell lymphoma contributes to tumor cell survival and is a target of new adjuvant therapies. Leuk. Lymphoma 58, 1702–1710 (2017).CAS 
PubMed 

Google Scholar 
91.Richards, K. L. et al. Gene profiling of canine B-cell lymphoma reveals germinal center and postgerminal center subtypes with different survival times, modeling human DLBCL. Cancer Res. 73, 5029–5039 (2013). This study highlights the molecular phenotyping, based on comparative gene expression profiling, of canine lymphoma and how it relates to human DLBCL.CAS 
PubMed 
PubMed Central 

Google Scholar 
92.Gaurnier-Hausser, A., Patel, R., Baldwin, A. S., May, M. J. & Mason, N. J. NEMO-binding domain peptide inhibits constitutive NF-κB activity and reduces tumor burden in a canine model of relapsed, refractory diffuse large B-cell lymphoma. Clin. Cancer Res. 17, 4661–4671 (2011).CAS 
PubMed 
PubMed Central 

Google Scholar 
93.Avery, A. C. The genetic and molecular basis for canine models of human leukemia and lymphoma. Front. Oncol. 10, 23 (2020).PubMed 
PubMed Central 

Google Scholar 
94.Bushell, K. R. et al. Genetic inactivation of TRAF3 in canine and human B-cell lymphoma. Blood 125, 999–1005 (2015).CAS 
PubMed 

Google Scholar 
95.Elvers, I. et al. Exome sequencing of lymphomas from three dog breeds reveals somatic mutation patterns reflecting genetic background. Genome Res. 25, 1634–1645 (2015).CAS 
PubMed 
PubMed Central 

Google Scholar 
96.Zain, J. M. Aggressive T-cell lymphomas: 2019 updates on diagnosis, risk stratification, and management. Am. J. Hematol. 94, 929–946 (2019).CAS 
PubMed 

Google Scholar 
97.Heavican, T. B. et al. Genetic drivers of oncogenic pathways in molecular subgroups of peripheral T-cell lymphoma. Blood 133, 1664–1676 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
98.Harris, L. J. et al. Canine CD4+ T-cell lymphoma identified by flow cytometry exhibits a consistent histomorphology and gene expression profile. Vet. Comp. Oncol. 17, 253–264 (2019).CAS 
PubMed 

Google Scholar 
99.McDonald, J. T. et al. Comparative oncology DNA sequencing of canine T cell lymphoma via human hotspot panel. Oncotarget 9, 22693–22702 (2018).PubMed 
PubMed Central 

Google Scholar 
100.Panjwani, M. K. et al. Establishing a model system for evaluating CAR T cell therapy using dogs with spontaneous diffuse large B cell lymphoma. Oncoimmunology 9, 1676615 (2020).PubMed 

Google Scholar 
101.Panjwani, M. K. et al. Feasibility and safety of RNA-transfected CD20-specific chimeric antigen receptor T cells in dogs with spontaneous B cell lymphoma. Mol. Ther. 24, 1602–1614 (2016).CAS 
PubMed 
PubMed Central 

Google Scholar 
102.Marconato, L. et al. Opportunities and challenges of active immunotherapy in dogs with B-cell lymphoma: a 5-year experience in two veterinary oncology centers. J. Immunother. Cancer 7, 146 (2019).PubMed 
PubMed Central 

Google Scholar 
103.Rue, S. M. et al. Identification of a candidate therapeutic antibody for treatment of canine B-cell lymphoma. Vet. Immunol. Immunopathol. 164, 148–159 (2015).CAS 
PubMed 

Google Scholar 
104.Mizuno, T. et al. Generation of a canine anti-canine CD20 antibody for canine lymphoma treatment. Sci. Rep. 10, 11476 (2020).CAS 
PubMed 
PubMed Central 

Google Scholar 
105.Haran, K. P. et al. Generation and validation of an antibody to canine CD19 for diagnostic and future therapeutic purposes. Vet. Pathol. 57, 241–252 (2020).CAS 
PubMed 

Google Scholar 
106.Shapiro, S. G. et al. Canine urothelial carcinoma: genomically aberrant and comparatively relevant. Chromosome Res. 23, 311–331 (2015).CAS 
PubMed 
PubMed Central 

Google Scholar 
107.Dhawan, D., Hahn, N. M., Ramos-Vara, J. A. & Knapp, D. W. Naturally-occurring canine invasive urothelial carcinoma harbors luminal and basal transcriptional subtypes found in human muscle invasive bladder cancer. PLoS Genet. 14, e1007571 (2018). This paper provides a comprehensive description of histologic subtypes and molecular features of canine urothelial carcinoma, relating these findings to human bladder cancer.PubMed 
PubMed Central 

Google Scholar 
108.Knapp, D. W. et al. Naturally-occurring invasive urothelial carcinoma in dogs, a unique model to drive advances in managing muscle invasive bladder cancer in humans. Front. Oncol. 9, 1493 (2019).PubMed 

Google Scholar 
109.Jack, S. et al. A novel, safe, fast and efficient treatment for Her2-positive and negative bladder cancer utilizing an EGF–anthrax toxin chimera. Int. J. Cancer 146, 449–460 (2020).CAS 
PubMed 

Google Scholar 
110.Fazekas-Singer, J. et al. Development of a radiolabeled caninized anti-EGFR antibody for comparative oncology trials. Oncotarget 8, 83128–83141 (2017).PubMed 
PubMed Central 

Google Scholar 
111.Nagaya, T. et al. Near infrared photoimmunotherapy targeting bladder cancer with a canine anti-epidermal growth factor receptor (EGFR) antibody. Oncotarget 9, 19026–19038 (2018).PubMed 
PubMed Central 

Google Scholar 
112.Fulkerson, C. M., Dhawan, D., Ratliff, T. L., Hahn, N. M. & Knapp, D. W. Naturally occurring canine invasive urinary bladder cancer: a complementary animal model to improve the success rate in human clinical trials of new cancer drugs. Int. J. Genomics 2017, 6589529 (2017).PubMed 
PubMed Central 

Google Scholar 
113.Mohammed, S. I. et al. Effects of the cyclooxygenase inhibitor, piroxicam, on tumor response, apoptosis, and angiogenesis in a canine model of human invasive urinary bladder cancer. Cancer Res. 62, 356–358 (2002).CAS 
PubMed 

Google Scholar 
114.Dhawan, D. et al. Effects of short-term celecoxib treatment in patients with invasive transitional cell carcinoma of the urinary bladder. Mol. Cancer Ther. 9, 1371–1377 (2010).CAS 
PubMed 
PubMed Central 

Google Scholar 
115.Sabichi, A. L. et al. A randomized controlled trial of celecoxib to prevent recurrence of nonmuscle-invasive bladder cancer. Cancer Prev. Res. 4, 1580–1589 (2011).CAS 

Google Scholar 
116.Chand, D. et al. Immune checkpoint B7x (B7-H4/B7S1/VTCN1) is over expressed in spontaneous canine bladder cancer: the first report and its implications in a preclinical model. Bladder Cancer 5, 63–71 (2019).PubMed 
PubMed Central 

Google Scholar 
117.Decker, B. et al. Homologous mutation to human BRAF V600E is common in naturally occurring canine bladder cancer — evidence for a relevant model system and urine-based diagnostic test. Mol. Cancer Res. 13, 993–1002 (2015).CAS 
PubMed 
PubMed Central 

Google Scholar 
118.Mochizuki, H., Kennedy, K., Shapiro, S. G. & Breen, M. BRAF mutations in canine cancers. PLoS ONE 10, e01295344 (2015).
Google Scholar 
119.Longo, T. et al. Targeted exome sequencing of the cancer genome in patients with very high-risk bladder cancer. Eur. Urol. 70, 714–717 (2016).CAS 
PubMed 

Google Scholar 
120.Sorenmo, K. U. in Withrow & MacEwen’s Small Animal Clinical Oncology (eds Thamm D. H., Liptak J. M. & Vail D.) 604-625 (Elsevier, 2020).121.Sorenmo, K. U. et al. Canine mammary gland tumours; a histological continuum from benign to malignant; clinical and histopathological evidence. Vet. Comp. Oncol. 7, 162–172 (2009).CAS 
PubMed 

Google Scholar 
122.Nguyen, F. et al. Canine invasive mammary carcinomas as models of human breast cancer. Part 1: natural history and prognostic factors. Breast Cancer Res. Treat. 167, 635–648 (2018).CAS 
PubMed 

Google Scholar 
123.Raposo, T. P. et al. Comparative aspects of canine and human inflammatory breast cancer. Semin. Oncol. 44, 288–300 (2017).PubMed 

Google Scholar 
124.Carvalho, M. I. et al. A comparative approach of tumor-associated inflammation in mammary cancer between humans and dogs. Biomed. Res. Int. 2016, 4917387 (2016).PubMed 
PubMed Central 

Google Scholar 
125.Varallo, G. R. et al. Prognostic phenotypic classification for canine mammary tumors. Oncol. Lett. 18, 6545–6553 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
126.Lutful Kabir, F. M., Alvarez, C. E. & Bird, R. C. Canine mammary carcinomas: a comparative analysis of altered gene expression. Vet. Sci. 3, 1 (2015).PubMed Central 

Google Scholar 
127.Lee, K. H., Hwang, H. J., Noh, H. J., Shin, T. J. & Cho, J. Y. Somatic mutation of PIK3CA (H1047R) is a common driver mutation hotspot in canine mammary tumors as well as human breast cancers. Cancers 11, 2006 (2019).CAS 
PubMed Central 

Google Scholar 
128.Vasan, N., Toska, E. & Scaltriti, M. Overview of the relevance of PI3K pathway in HR-positive breast cancer. Ann. Oncol. 30, x3–x11 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
129.Burrai, G. P. et al. Investigation of HER2 expression in canine mammary tumors by antibody-based, transcriptomic and mass spectrometry analysis: is the dog a suitable animal model for human breast cancer? Tumour Biol. 36, 9083–9091 (2015).CAS 
PubMed 

Google Scholar 
130.Pena, L. et al. Canine mammary tumors: a review and consensus of standard guidelines on epithelial and myoepithelial phenotype markers, HER2, and hormone receptor assessment using immunohistochemistry. Vet. Pathol. 51, 127–145 (2014).CAS 
PubMed 

Google Scholar 
131.Lorch, G. et al. Identification of recurrent activating her2 mutations in primary canine pulmonary adenocarcinoma. Clin. Cancer Res. 25, 5866–5877 (2019). This study describes the molecular landscape of canine lung cancer, reporting on the similarities to and differences from human NSCLC.CAS 
PubMed 
PubMed Central 

Google Scholar 
132.Seung, B. J., Cho, S. H., Kim, S. H., Lim, H. Y. & Sur, J. H. Quantitative analysis of HER2 mRNA expression by RNA in situ hybridization in canine mammary gland tumors: comparison with immunohistochemistry analysis. PLoS ONE 15, e0229031 (2020).CAS 
PubMed 
PubMed Central 

Google Scholar 
133.Thumser-Henner, P., Nytko, K. J. & Rohrer Bley, C. Mutations of BRCA2 in canine mammary tumors and their targeting potential in clinical therapy. BMC Vet. Res. 16, 30 (2020).CAS 
PubMed 
PubMed Central 

Google Scholar 
134.Saba, C. et al. A comparative oncology study of iniparib defines its pharmacokinetic profile and biological activity in a naturally-occurring canine cancer model. PLoS ONE 11, e0149194 (2016).PubMed 
PubMed Central 

Google Scholar 
135.Connolly, N. P. et al. Cross-species transcriptional analysis reveals conserved and host-specific neoplastic processes in mammalian glioma. Sci. Rep. 8, 1180 (2018).PubMed 
PubMed Central 

Google Scholar 
136.Miller, A. D., Miller, C. R. & Rossmeisl, J. H. Canine primary intracranial cancer: a clinicopathologic and comparative review of glioma, meningioma, and choroid plexus tumors. Front. Oncol. 9, 1151 (2019).PubMed 
PubMed Central 

Google Scholar 
137.Thomas, R. et al. ‘Putting our heads together’: insights into genomic conservation between human and canine intracranial tumors. J. Neurooncol. 94, 333–349 (2009).CAS 
PubMed 
PubMed Central 

Google Scholar 
138.Filley, A. et al. Immunologic and gene expression profiles of spontaneous canine oligodendrogliomas. J. Neurooncol 137, 469–479 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
139.Dickinson, P. J. et al. Chromosomal aberrations in canine gliomas define candidate genes and common pathways in dogs and humans. J. Neuropathol. Exp. Neurol. 75, 700–710 (2016).CAS 
PubMed 
PubMed Central 

Google Scholar 
140.Koehler, J. W. et al. A revised diagnostic classification of canine glioma: towards validation of the canine glioma patient as a naturally occurring preclinical model for human glioma. J. Neuropathol. Exp. Neurol. 77, 1039–1054 (2018).PubMed 
PubMed Central 

Google Scholar 
141.Ostrom, Q. T., Cote, D. J., Ascha, M., Kruchko, C. & Barnholtz-Sloan, J. S. Adult glioma incidence and survival by race or ethnicity in the United States from 2000 to 2014. JAMA Oncol. 4, 1254–1262 (2018).PubMed 
PubMed Central 

Google Scholar 
142.Chen, R., Smith-Cohn, M., Cohen, A. L. & Colman, H. Glioma subclassifications and their clinical significance. Neurotherapeutics 14, 284–297 (2017).PubMed 
PubMed Central 

Google Scholar 
143.LeBlanc, A. K. et al. Creation of an NCI Comparative Brain Tumor Consortium: informing the translation of new knowledge from canine to human brain tumor patients. NeuroOncol. 18, 1209–1218 (2016).
Google Scholar 
144.Amin, S. B. et al. Comparative molecular life history of spontaneous canine and human gliomas. Cancer Cell 37, 243–257.e247 (2020). This study comprehensively describes the genomic landscape of>80 canine gliomas, demonstrating that canine glioma more closely resembles paediatric rather than adult human glioma.CAS 
PubMed 

Google Scholar 
145.Reitman, Z. J. et al. IDH1 and IDH2 hotspot mutations are not found in canine glioma. Int. J. Cancer 127, 245–246 (2010).CAS 
PubMed 
PubMed Central 

Google Scholar 
146.Latouche, E. L. et al. High-frequency irreversible electroporation for intracranial meningioma: a feasibility study in a spontaneous canine tumor model. Technol. Cancer Res. Treat. 17, 1533033818785285 (2018).PubMed 
PubMed Central 

Google Scholar 
147.Schlein, L. J. et al. Immunohistochemical characterization of procaspase-3 overexpression as a druggable target with PAC-1, a procaspase-3 activator, in canine and human brain cancers. Front. Oncol. 9, 96 (2019).PubMed 
PubMed Central 

Google Scholar 
148.Dickinson, P. J. et al. Canine model of convection-enhanced delivery of liposomes containing CPT-11 monitored with real-time magnetic resonance imaging: laboratory investigation. J. Neurosurg. 108, 989–998 (2008).CAS 
PubMed 

Google Scholar 
149.Debinski, W., Dickinson, P., Rossmeisl, J. H., Robertson, J. & Gibo, D. M. New agents for targeting of IL-13RA2 expressed in primary human and canine brain tumors. PLoS ONE 8, e77719 (2013).CAS 
PubMed 
PubMed Central 

Google Scholar 
150.MacDiarmid, J. A. et al. Targeted doxorubicin delivery to brain tumors via minicells: proof of principle using dogs with spontaneously occurring tumors as a model. PLoS ONE 11, e0151832 (2016).PubMed 
PubMed Central 

Google Scholar 
151.Sayour, E. J. et al. Personalized tumor RNA loaded lipid-nanoparticles prime the systemic and intratumoral milieu for response to cancer immunotherapy. Nano. Lett. 18, 6195–6206 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
152.Olin, M. R. et al. Treatment combining CD200 immune checkpoint inhibitor and tumor-lysate vaccination after surgery for pet dogs with high-grade glioma. Cancers 11, 137 (2019).CAS 
PubMed Central 

Google Scholar 
153.Olin, M. R. et al. Victory and defeat in the induction of a therapeutic response through vaccine therapy for human and canine brain tumors: a review of the state of the art. Crit. Rev. Immunol. 34, 399–432 (2014).CAS 
PubMed 
PubMed Central 

Google Scholar 
154.Andersen, B. M. et al. Vaccination for invasive canine meningioma induces in situ production of antibodies capable of antibody-dependent cell-mediated cytotoxicity. Cancer Res. 73, 2987–2997 (2013).CAS 
PubMed 
PubMed Central 

Google Scholar 
155.Pluhar, G. E. et al. Anti-tumor immune response correlates with neurological symptoms in a dog with spontaneous astrocytoma treated by gene and vaccine therapy. Vaccine 28, 3371–3378 (2010).CAS 
PubMed 
PubMed Central 

Google Scholar 
156.Yin, Y. et al. Checkpoint blockade reverses anergy in IL-13Rα2 humanized scFv-based CAR T cells to treat murine and canine gliomas. Mol. Ther. Oncolytics 11, 20–38 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
157.Lee, B., Clarke, D., Watson, M. & Laver, T. Retrospective evaluation of a modified human lung cancer stage classification in dogs with surgically excised primary pulmonary carcinomas. Vet. Comp. Oncol. https://doi.org/10.1111/vco.12582 (2020).Article 
PubMed 

Google Scholar 
158.Hellmann, M. D. et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N. Engl. J. Med. 381, 2020–2031 (2019).CAS 
PubMed 

Google Scholar 
159.Dafni, U., Tsourti, Z., Vervita, K. & Peters, S. Immune checkpoint inhibitors, alone or in combination with chemotherapy, as first-line treatment for advanced non-small cell lung cancer. A systematic review and network meta-analysis. Lung Cancer 134, 127–140 (2019).PubMed 

Google Scholar 
160.D’Arcangelo, M., D’Incecco, A. & Cappuzzo, F. Rare mutations in non-small-cell lung cancer. Future Oncol. 9, 699–711 (2013).PubMed 

Google Scholar 
161.Govindan, R. et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 150, 1121–1134 (2012).CAS 
PubMed 
PubMed Central 

Google Scholar 
162.Nishiya, A. T. et al. Comparative aspects of canine melanoma. Vet. Sci. 3, 7 (2016).PubMed Central 

Google Scholar 
163.Simpson, R. M. et al. Sporadic naturally occurring melanoma in dogs as a preclinical model for human melanoma. Pigment. Cell Melanoma Res. 27, 37–47 (2014).CAS 
PubMed 

Google Scholar 
164.Hernandez, B. et al. Naturally occurring canine melanoma as a predictive comparative oncology model for human mucosal and other triple wild-type melanomas. Int. J. Mol. Sci. 19, 394 (2018).PubMed Central 

Google Scholar 
165.Hendricks, W. P. D. et al. Somatic inactivating PTPRJ mutations and dysregulated pathways identified in canine malignant melanoma by integrated comparative genomic analysis. PLoS Genet. 14, e1007589 (2018).PubMed 
PubMed Central 

Google Scholar 
166.Prouteau, A. & Andre, C. Canine melanomas as models for human melanomas: clinical, histological, and genetic comparison. Genes 10, 501 (2019).CAS 
PubMed Central 

Google Scholar 
167.Wong, K. et al. Cross-species genomic landscape comparison of human mucosal melanoma with canine oral and equine melanoma. Nat. Commun. 10, 353 (2019). This report provides an overview of shared genomic lesions from humans, horses and dogs, demonstrating biologic convergence despite differences in upstream driver mutational events.CAS 
PubMed 
PubMed Central 

Google Scholar 
168.Poorman, K. et al. Comparative cytogenetic characterization of primary canine melanocytic lesions using array CGH and fluorescence in situ hybridization. Chromosome Res. 23, 171–186 (2015).CAS 
PubMed 

Google Scholar 
169.Wei, B. R. et al. Synergistic targeted inhibition of MEK and dual PI3K/mTOR diminishes viability and inhibits tumor growth of canine melanoma underscoring its utility as a preclinical model for human mucosal melanoma. Pigment. Cell Melanoma Res. 29, 643–655 (2016).CAS 
PubMed 
PubMed Central 

Google Scholar 
170.Hayward, N. K. et al. Whole-genome landscapes of major melanoma subtypes. Nature 545, 175–180 (2017).CAS 
PubMed 

Google Scholar 
171.Fowles, J. S., Denton, C. L. & Gustafson, D. L. Comparative analysis of MAPK and PI3K/AKT pathway activation and inhibition in human and canine melanoma. Vet. Comp. Oncol. 13, 288–304 (2013).PubMed 

Google Scholar 
172.Hartley, G. et al. Immune regulation of canine tumour and macrophage PD-L1 expression. Vet. Comp. Oncol. 15, 534–549 (2017).CAS 
PubMed 

Google Scholar 
173.Dow, S. A role for dogs in advancing cancer immunotherapy research. Front. Immunol. 10, 2935 (2019).CAS 
PubMed 

Google Scholar 
174.Klingemann, H. Immunotherapy for dogs: running behind humans. Front. Immunol. 9, 133 (2018).PubMed 
PubMed Central 

Google Scholar 
175.Bergeron, L. M. et al. Comparative functional characterization of canine IgG subclasses. Vet. Immunol. Immunopathol. 157, 31–41 (2014). This work is the only comprehensive, comparative description of the functional subclasses of the canine IgG family, which highlights similarities and differences with humans.CAS 
PubMed 

Google Scholar 
176.Hartley, G., Elmslie, R., Dow, S. & Guth, A. Checkpoint molecule expression by B and T cell lymphomas in dogs. Vet. Comp. Oncol. 16, 352–360 (2018).CAS 
PubMed 

Google Scholar 
177.Coy, J., Caldwell, A., Chow, L., Guth, A. & Dow, S. PD-1 expression by canine T cells and functional effects of PD-1 blockade. Vet. Comp. Oncol. 15, 1487–1502 (2017).CAS 
PubMed 

Google Scholar 
178.Kumar, S. R. et al. Programmed death ligand 1 is expressed in canine B cell lymphoma and downregulated by MEK inhibitors. Vet. Comp. Oncol. 15, 1527–1536 (2017).CAS 
PubMed 

Google Scholar 
179.Pinheiro, D. et al. Phenotypic and functional characterization of a CD4+CD25highFOXP3high regulatory T-cell population in the dog. Immunology 132, 111–122 (2011).CAS 
PubMed 
PubMed Central 

Google Scholar 
180.Wu, Y. et al. Phenotypic characterisation of regulatory T cells in dogs reveals signature transcripts conserved in humans and mice. Sci. Rep. 9, 13478 (2019).PubMed 
PubMed Central 

Google Scholar 
181.Hutchison, S. et al. Characterization of myeloid-derived suppressor cells and cytokines GM-CSF, IL-10 and MCP-1 in dogs with malignant melanoma receiving a GD3-based immunotherapy. Vet. Immunol. Immunopathol. 216, 109912 (2019).CAS 
PubMed 

Google Scholar 
182.Paoloni, M. et al. Defining the pharmacodynamic profile and therapeutic index of NHS-IL12 immunocytokine in dogs with malignant melanoma. PLoS ONE 10, e0129954 (2015).PubMed 
PubMed Central 

Google Scholar 
183.Yasuda, N., Masuda, K., Tsukui, T., Teng, A. & Ishii, Y. Identification of canine natural CD3-positive T cells expressing an invariant T-cell receptor α chain. Vet. Immunol. Immunopathol. 132, 224–231 (2009).CAS 
PubMed 

Google Scholar 
184.Park, J. S. et al. Canine cancer immunotherapy studies: linking mouse and human. J. Immunother. Cancer 4, 97 (2016).PubMed 
PubMed Central 

Google Scholar 
185.Overgaard, N. H. et al. Of mice, dogs, pigs, and men: choosing the appropriate model for immuno-oncology research. ILAR J. 59, 247–262 (2018).CAS 
PubMed 

Google Scholar 
186.Biller, B. J., Elmslie, R. E., Burnett, R. C., Avery, A. C. & Dow, S. W. Use of FoxP3 expression to identify regulatory T cells in healthy dogs and dogs with cancer. Vet. Immunol. Immunopathol. 116, 69–78 (2007).CAS 
PubMed 

Google Scholar 
187.Weiss D. J. in Schalm’s Veterinary Hematology (eds Weiss, D. J., Wardrop, K. J. & Schalm, O. W.) 1206 (Wiley-Blackwell, 2011).188.Lepone, L. M. et al. Analyses of 123 peripheral human immune cell subsets: defining differences with age and between healthy donors and cancer patients not detected in analysis of standard immune cell types. J. Circ. Biomark 5, 5 (2016).PubMed 
PubMed Central 

Google Scholar 
189.Withers, S. S. et al. Association of macrophage and lymphocyte infiltration with outcome in canine osteosarcoma. Vet. Comp. Oncol. 17, 49–60 (2019).CAS 
PubMed 

Google Scholar 
190.Biller, B. J., Guth, A., Burton, J. H. & Dow, S. W. Decreased ratio of CD8+ T cells to regulatory T cells associated with decreased survival in dogs with osteosarcoma. J. Vet. Intern. Med. 24, 1118–1123 (2010).CAS 
PubMed 
PubMed Central 

Google Scholar 
191.Gingrich, A. A., Modiano, J. F. & Canter, R. J. Characterization and potential applications of dog natural killer cells in cancer immunotherapy. J. Clin. Med. 8, 1802 (2019).CAS 
PubMed Central 

Google Scholar 
192.Graves, S. S. et al. Development and characterization of a canine-specific anti-CD94 (KLRD-1) monoclonal antibody. Vet. Immunol. Immunopathol. 211, 10–18 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
193.Goulart, M. R. et al. Phenotypic and transcriptomic characterization of canine myeloid-derived suppressor cells. Sci. Rep. 9, 3574 (2019). This report describes canine MDSCs from both morphologic and gene expression contexts.PubMed 
PubMed Central 

Google Scholar 
194.Hlavaty, S. I. et al. Bacterial killing activity of polymorphonuclear myeloid-derived suppressor cells isolated from tumor-bearing dogs. Front. Immunol. 10, 2371 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
195.Chen, B. et al. Predicting HLA class II antigen presentation through integrated deep learning. Nat. Biotech. 37, 1332–1343 (2019).CAS 

Google Scholar 
196.Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
197.Kumai, T., Fan, A., Harabuchi, Y. & Celis, E. Cancer immunotherapy: moving forward with peptide T cell vaccines. Curr. Opin. Immunol. 47, 57–63 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
198.Kennedy, L. J. et al. Nomenclature for factors of the dog major histocompatibility system (DLA), 2000: second report of the ISAG DLA Nomenclature Committee. Tissue Antigens 58, 55–70 (2001).CAS 
PubMed 

Google Scholar 
199.Ross, P. et al. The canine MHC class Ia allele DLA-88*508:01 presents diverse self- and canine distemper virus-origin peptides of varying length that have a conserved binding motif. Vet. Immunol. Immunopathol. 197, 76–86 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
200.Ross, P., Holmes, J. C., Gojanovich, G. S. & Hess, P. R. A cell-based MHC stabilization assay for the detection of peptide binding to the canine classical class I molecule, DLA-88. Vet. Immunol. Immunopathol. 150, 206–212 (2012).CAS 
PubMed 
PubMed Central 

Google Scholar 
201.Xiao, J. et al. Diversified anchoring features the peptide presentation of DLA-88*50801: first structural insight into domestic dog MHC class I. J. Immunol. 197, 2306–2315 (2016).CAS 
PubMed 

Google Scholar 
202.Venkataraman, G. M. et al. Thirteen novel canine dog leukocyte antigen-88 alleles identified by sequence-based typing. HLA 90, 165–170 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
203.Nemec, P. S., Kapatos, A., Holmes, J. C. & Hess, P. R. The prevalent Boxer MHC class Ia allotype dog leukocyte antigen (DLA)-88*034:01 preferentially binds nonamer peptides with a defined motif. HLA 92, 403–407 (2018).CAS 
PubMed 

Google Scholar 
204.Ross, P. et al. Allelic diversity at the DLA-88 locus in Golden Retriever and Boxer breeds is limited. Tissue Antigens 80, 175–183 (2012).CAS 
PubMed 
PubMed Central 

Google Scholar 
205.Barth, S. M. et al. Characterization of the canine MHC class I DLA-88*50101 peptide binding motif as a prerequisite for canine T cell immunotherapy. PLoS ONE 11, e0167017 (2016).PubMed 
PubMed Central 

Google Scholar 
206.Finocchiaro, L. M. E. & Glikin, G. C. Recent clinical trials of cancer immunogene therapy in companion animals. World J. Exp. Med. 7, 42–48 (2017).PubMed 
PubMed Central 

Google Scholar 
207.Perales, M. A. et al. Phase I/II study of GM-CSF DNA as an adjuvant for a multipeptide cancer vaccine in patients with advanced melanoma. Mol. Ther. 16, 2022–2029 (2008).CAS 
PubMed 
PubMed Central 

Google Scholar 
208.Wolchok, J. D. et al. Safety and immunogenicity of tyrosinase DNA vaccines in patients with melanoma. Mol. Ther. 15, 2044–2050 (2007).CAS 
PubMed 

Google Scholar 
209.Strauss, J. et al. First-in-human phase I trial of a tumor-targeted cytokine (NHS-IL12) in subjects with metastatic solid tumors. Clin. Cancer Res. 25, 99–109 (2019).CAS 
PubMed 

Google Scholar 
210.Canter, R. J. et al. Radiotherapy enhances natural killer cell cytotoxicity and localization in pre-clinical canine sarcomas and first-in-dog clinical trial. J. Immunother. Cancer 5, 98 (2017).PubMed 
PubMed Central 

Google Scholar 
211.Judge, S. J. et al. Blood and tissue biomarker analysis in dogs with osteosarcoma treated with palliative radiation and intra-tumoral autologous natural killer cell transfer. PLoS ONE 15, e0224775 (2020).CAS 
PubMed 
PubMed Central 

Google Scholar 
212.Knapp, D. W., Dhawan, D. & Ostrander, E. ‘Lassie,’ ‘Toto,’ and fellow pet dogs: poised to lead the way for advances in cancer prevention. Am. Soc. Clin. Oncol. Educ. Book https://doi.org/10.14694/EdBook_AM.2015.35.e667 (2015).213.Serrano, D., Lazzeroni, M. & Bonanni, B. Cancer chemoprevention: much has been done, but there is still much to do. State of the art and possible new approaches. Mol. Oncol. 9, 1008–1017 (2015).PubMed 

Google Scholar 
214.Li, J. et al. SETD2: an epigenetic modifier with tumor suppressor functionality. Oncotarget 7, 50719–50734 (2016).PubMed 
PubMed Central 

Google Scholar 
215.Jiang, C., He, C., Wu, Z., Li, F. & Xiao, J. Histone methyltransferase SETD2 regulates osteosarcoma cell growth and chemosensitivity by suppressing Wnt/β-catenin signaling. Biochem. Biophys. Res. Commun. 502, 382–388 (2018).CAS 
PubMed 

Google Scholar 
216.Tagawa, M., Maekawa, N., Konnai, S. & Takagi, S. Evaluation of costimulatory molecules in peripheral blood lymphocytes of canine patients with histiocytic sarcoma. PLoS ONE 11, e0150030 (2016).PubMed 
PubMed Central 

Google Scholar 
217.Shimizu, K. et al. Eomes transcription factor is required for the development and differentiation of invariant NKT cells. Commun. Biol. 2, 150 (2019).PubMed 
PubMed Central 

Google Scholar 
218.North American Pet Health Insurance Association. Willis Towers Watson Actuary Consultants. State of the industry report https://naphia.org/about-the-industry/section-2-total-pets-insured/ (2020).219.Mullin, C. & Clifford, C. A. Histiocytic sarcoma and hemangiosarcoma update. Vet. Clin. North Am. Small Anim. Pract. 49, 855–879 (2019).PubMed 

Google Scholar 
220.Megquier, K. et al. Comparative genomics reveals shared mutational landscape in canine hemangiosarcoma and human angiosarcoma. Mol. Cancer Res. 17, 2410–2421 (2019). This paper describes the shared molecular features of malignant vascular tumours in dogs and humans, providing the first evidence that canine hemangiosarcoma could serve as a model for human angiosarcoma.CAS 
PubMed 
PubMed Central 

Google Scholar 
221.Takada, M. et al. Activating mutations in PTPN11 and KRAS in canine histiocytic sarcomas. Genes 10, 505 (2019).CAS 
PubMed Central 

Google Scholar 
222.Takada, M. et al. Targeting MEK in a translational model of histiocytic sarcoma. Mol. Cancer Ther. 17, 2439–2450 (2018).CAS 
PubMed 

Google Scholar 
223.Mingus, L. Canine cancer prevention vaccine study seeks participants https://cvmbs.source.colostate.edu/canine-cancer-prevention-vaccine-study-seeks-participants/ (2019).224.Guy, M. K. et al. The Golden Retriever Lifetime Study: establishing an observational cohort study with translational relevance for human health. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140230 (2015).PubMed 
PubMed Central 

Google Scholar 

Read More

Show More

Related Articles

Leave a Reply

Your email address will not be published.

Back to top button
Close
Close