Mouse

Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors

1.Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).CAS 
PubMed 
PubMed Central 

Google Scholar 
2.Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA 109, E2579–E2586 (2012).CAS 
PubMed 

Google Scholar 
3.Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).CAS 
PubMed 
PubMed Central 

Google Scholar 
4.Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).CAS 
PubMed 
PubMed Central 

Google Scholar 
5.Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227–229 (2013).CAS 
PubMed 
PubMed Central 

Google Scholar 
6.Cho, S. W., Kim, S., Kim, J. M. & Kim, J.-S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).CAS 
PubMed 

Google Scholar 
7.Jinek, M. et al. RNA-programmed genome editing in human cells. Elife 2, e00471 (2013).PubMed 
PubMed Central 

Google Scholar 
8.Shalem, O., Sanjana, N. E. & Zhang, F. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 16, 299–311 (2015).CAS 
PubMed 
PubMed Central 

Google Scholar 
9.Dominguez, A. A., Lim, W. A. & Qi, L. S. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell Biol. 17, 5–15 (2016).CAS 
PubMed 

Google Scholar 
10.Thakore, P. I., Black, J. B., Hilton, I. B. & Gersbach, C. A. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat. Methods 13, 127–137 (2016).CAS 
PubMed 
PubMed Central 

Google Scholar 
11.Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9, 1911 (2018).PubMed 
PubMed Central 

Google Scholar 
12.Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR-Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).CAS 
PubMed 

Google Scholar 
13.Hille, F. et al. The biology of CRISPR-Cas: backward and forward. Cell 172, 1239–1259 (2018).CAS 
PubMed 

Google Scholar 
14.Komor, A. C., Badran, A. H. & Liu, D. R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168, 20–36 (2017).CAS 
PubMed 

Google Scholar 
15.Koonin, E. V., Makarova, K. S. & Zhang, F. Diversity, classification and evolution of CRISPR-Cas systems. Curr. Opin. Microbiol. 37, 67–78 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
16.Makarova, K. S. et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2020).CAS 
PubMed 

Google Scholar 
17.Jiang, F. & Doudna, J. A. CRISPR–Cas9 structures and mechanisms. Annu. Rev. Biophys. 46, 505–529 (2017).CAS 
PubMed 

Google Scholar 
18.Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011).CAS 
PubMed 
PubMed Central 

Google Scholar 
19.Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010).CAS 
PubMed 

Google Scholar 
20.Chen, F. et al. Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting. Nat. Commun. 8, 14958 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
21.Schmid-Burgk, J. L. et al. Highly parallel profiling of Cas9 variant specificity. Mol. Cell 78, 794–800.e8 (2020).CAS 
PubMed 

Google Scholar 
22.Shou, J., Li, J., Liu, Y. & Wu, Q. Precise and predictable CRISPR chromosomal rearrangements reveal principles of Cas9-mediated nucleotide insertion. Mol. Cell 71, 498–509.e4 (2018).CAS 
PubMed 

Google Scholar 
23.Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C. & Doudna, J. A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62–67 (2014).CAS 
PubMed 
PubMed Central 

Google Scholar 
24.Szczelkun, M. D. et al. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc. Natl Acad. Sci. USA 111, 9798–9803 (2014).CAS 
PubMed 

Google Scholar 
25.Jiang, F. et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351, 867–871 (2016).CAS 
PubMed 
PubMed Central 

Google Scholar 
26.Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).CAS 
PubMed 
PubMed Central 

Google Scholar 
27.Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
28.Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
29.Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
30.Jinek, M. et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997 (2014).PubMed 
PubMed Central 

Google Scholar 
31.Jiang, F., Zhou, K., Ma, L., Gressel, S. & Doudna, J. A. A. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348, 1477–1481 (2015).CAS 
PubMed 

Google Scholar 
32.Sternberg, S. H., LaFrance, B., Kaplan, M. & Doudna, J. A. Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527, 110–113 (2015).CAS 
PubMed 
PubMed Central 

Google Scholar 
33.Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935–949 (2014).CAS 
PubMed 
PubMed Central 

Google Scholar 
34.Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).CAS 
PubMed 
PubMed Central 

Google Scholar 
35.Esvelt, K. M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116–1121 (2013).CAS 
PubMed 
PubMed Central 

Google Scholar 
36.Müller, M. et al. Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome. Mol. Ther. 24, 636–644 (2016).PubMed 
PubMed Central 

Google Scholar 
37.Hou, Z. et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl Acad. Sci. USA 110, 15644–15649 (2013).CAS 
PubMed 

Google Scholar 
38.Edraki, A. et al. A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol. Cell 73, 714–726.e4 (2019).CAS 
PubMed 

Google Scholar 
39.Kim, E. et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun. 8, 14500 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
40.Chatterjee, P., Jakimo, N. & Jacobson, J. M. Minimal PAM specificity of a highly similar SpCas9 ortholog. Sci. Adv. 4, eaau0766 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
41.Hirano, H. et al. Structure and engineering of Francisella novicida Cas9. Cell 164, 950–961 (2016).CAS 
PubMed 
PubMed Central 

Google Scholar 
42.Harrington, L. B. et al. A thermostable Cas9 with increased lifetime in human plasma. Nat. Commun. 8, 1424 (2017).PubMed 
PubMed Central 

Google Scholar 
43.Kim, D., Luk, K., Wolfe, S. A. & Kim, J.-S. Evaluating and enhancing target specificity of gene-editing nucleases and deaminases. Annu. Rev. Biochem. 88, 191–220 (2019).CAS 
PubMed 

Google Scholar 
44.Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).CAS 
PubMed 
PubMed Central 

Google Scholar 
45.Zetsche, B. et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat. Biotechnol. 35, 31–34 (2017).CAS 
PubMed 

Google Scholar 
46.Harrington, L. B. et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362, 839–842 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
47.Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 60, 385–397 (2015).CAS 
PubMed 
PubMed Central 

Google Scholar 
48.Strecker, J. et al. Engineering of CRISPR-Cas12b for human genome editing. Nat. Commun. 10, 212 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
49.Yan, W. X. et al. Functionally diverse type V CRISPR-Cas systems. Science 363, 88–91 (2019).CAS 
PubMed 

Google Scholar 
50.Burstein, D. et al. New CRISPR-Cas systems from uncultivated microbes. Nature 542, 237–241 (2017).CAS 
PubMed 

Google Scholar 
51.Liu, J.-J. et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566, 218–223 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
52.Chen, J. S. et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
53.Gootenberg, J. S. et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356, 438–442 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
54.Gootenberg, J. S. et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360, 439–444 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
55.Rouet, P., Smih, F. & Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14, 8096–8106 (1994).CAS 
PubMed 
PubMed Central 

Google Scholar 
56.Epinat, J.-C. et al. A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res. 31, 2952–2962 (2003).CAS 
PubMed 
PubMed Central 

Google Scholar 
57.Stoddard, B. L. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19, 7–15 (2011).CAS 
PubMed 
PubMed Central 

Google Scholar 
58.Bibikova, M., Golic, M., Golic, K. G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002).CAS 
PubMed 
PubMed Central 

Google Scholar 
59.Porteus, M. H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003).PubMed 

Google Scholar 
60.Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010).CAS 
PubMed 

Google Scholar 
61.Carroll, D. Genome engineering with zinc-finger nucleases. Genetics 188, 773–782 (2011).CAS 
PubMed 
PubMed Central 

Google Scholar 
62.Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509–1512 (2009).CAS 
PubMed 

Google Scholar 
63.Christian, M. et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757–761 (2010).CAS 
PubMed 
PubMed Central 

Google Scholar 
64.Ciccia, A. & Elledge, S. J. The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179–204 (2010).CAS 
PubMed 
PubMed Central 

Google Scholar 
65.Chapman, J. R., Taylor, M. R. G. & Boulton, S. J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 47, 497–510 (2012).CAS 
PubMed 

Google Scholar 
66.Yeh, C. D., Richardson, C. D. & Corn, J. E. Advances in genome editing through control of DNA repair pathways. Nat. Cell Biol. 21, 1468–1478 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
67.Lieber, M. R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211 (2010).CAS 
PubMed 
PubMed Central 

Google Scholar 
68.Heyer, W.-D., Ehmsen, K. T. & Liu, J. Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 44, 113–139 (2010).CAS 
PubMed 
PubMed Central 

Google Scholar 
69.Moynahan, M. E. & Jasin, M. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat. Rev. Mol. Cell Biol. 11, 196–207 (2010).CAS 
PubMed 
PubMed Central 

Google Scholar 
70.Lin, S., Staahl, B. T., Alla, R. K. & Doudna, J. A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife 3, e04766 (2014).PubMed 
PubMed Central 

Google Scholar 
71.Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).CAS 
PubMed 
PubMed Central 

Google Scholar 
72.Brinkman, E. K. et al. Kinetics and fidelity of the repair of Cas9-induced double-strand DNA breaks. Mol. Cell 70, 801–813.e6 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
73.van Overbeek, M. et al. DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Mol. Cell 63, 633–646 (2016).PubMed 

Google Scholar 
74.Shen, M. W. et al. Predictable and precise template-free CRISPR editing of pathogenic variants. Nature 563, 646–651 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
75.Allen, F. et al. Predicting the mutations generated by repair of Cas9-induced double-strand breaks. Nat. Biotechnol. 37, 64–72 (2018).
Google Scholar 
76.Chen, W. et al. Massively parallel profiling and predictive modeling of the outcomes of CRISPR/Cas9-mediated double-strand break repair. Nucleic Acids Res. 47, 7989–8003 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
77.Leenay, R. T. et al. Large dataset enables prediction of repair after CRISPR-Cas9 editing in primary T cells. Nat. Biotechnol. 37, 1034–1037 (2019).CAS 
PubMed 

Google Scholar 
78.Iyer, S. et al. Precise therapeutic gene correction by a simple nuclease-induced double-stranded break. Nature 568, 561–565 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
79.Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80–84 (2014).CAS 

Google Scholar 
80.Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).CAS 

Google Scholar 
81.Doench, J. G. et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014).CAS 
PubMed 
PubMed Central 

Google Scholar 
82.Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).CAS 
PubMed 
PubMed Central 

Google Scholar 
83.Korkmaz, G. et al. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat. Biotechnol. 34, 192–198 (2016).CAS 
PubMed 

Google Scholar 
84.Zhu, S. et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat. Biotechnol. 34, 1279–1286 (2016).CAS 
PubMed 
PubMed Central 

Google Scholar 
85.Montalbano, A., Canver, M. C. & Sanjana, N. E. High-throughput approaches to pinpoint function within the noncoding genome. Mol. Cell 68, 44–59 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
86.Kim, S., Kim, D., Cho, S. W., Kim, J. & Kim, J.-S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012–1019 (2014).CAS 
PubMed 
PubMed Central 

Google Scholar 
87.Dolan, A. E. et al. Introducing a spectrum of long-range genomic deletions in human embryonic stem cells using type I CRISPR-Cas. Mol. Cell 74, 936–950.e5 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
88.Morisaka, H. et al. CRISPR-Cas3 induces broad and unidirectional genome editing in human cells. Nat. Commun. 10, 5302 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
89.Cameron, P. et al. Harnessing type I CRISPR-Cas systems for genome engineering in human cells. Nat. Biotechnol. 37, 1471–1477 (2019).CAS 
PubMed 

Google Scholar 
90.Auer, T. O., Duroure, K., De Cian, A., Concordet, J.-P. & Del Bene, F. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. 24, 142–153 (2014).CAS 
PubMed 
PubMed Central 

Google Scholar 
91.Nakade, S. et al. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat. Commun. 5, 5560 (2014).CAS 
PubMed 
PubMed Central 

Google Scholar 
92.Suzuki, K. et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540, 144–149 (2016).CAS 
PubMed 
PubMed Central 

Google Scholar 
93.Mani, R.-S. & Chinnaiyan, A. M. Triggers for genomic rearrangements: insights into genomic, cellular and environmental influences. Nat. Rev. Genet. 11, 819–829 (2010).CAS 
PubMed 

Google Scholar 
94.Rabbitts, T. H. Chromosomal translocations in human cancer. Nature 372, 143–149 (1994).CAS 
PubMed 

Google Scholar 
95.Vanoli, F. et al. CRISPR-Cas9-guided oncogenic chromosomal translocations with conditional fusion protein expression in human mesenchymal cells. Proc. Natl Acad. Sci. USA 114, 3696–3701 (2017).CAS 
PubMed 

Google Scholar 
96.Choi, P. S. & Meyerson, M. Targeted genomic rearrangements using CRISPR/Cas technology. Nat. Commun. 5, 3728 (2014).CAS 
PubMed 
PubMed Central 

Google Scholar 
97.Torres, R. et al. Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat. Commun. 5, 3964 (2014).CAS 
PubMed 

Google Scholar 
98.Maddalo, D. et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516, 423–427 (2014).CAS 
PubMed 
PubMed Central 

Google Scholar 
99.Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
100.Rouet, P., Smih, F. & Jasin, M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl Acad. Sci. USA 91, 6064–6068 (1994).CAS 
PubMed 

Google Scholar 
101.Jasin, M. & Rothstein, R. Repair of strand breaks by homologous recombination. Cold Spring Harb. Perspect. Biol. 5, a012740 (2013).PubMed 
PubMed Central 

Google Scholar 
102.Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. & Corn, J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34, 339–344 (2016).CAS 
PubMed 

Google Scholar 
103.Rees, H. A., Yeh, W.-H. & Liu, D. R. Development of hRad51-Cas9 nickase fusions that mediate HDR without double-stranded breaks. Nat. Commun. 10, 2212 (2019).PubMed 
PubMed Central 

Google Scholar 
104.Srivastava, M. et al. An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell 151, 1474–1487 (2012).CAS 
PubMed 

Google Scholar 
105.Robert, F., Barbeau, M., Éthier, S., Dostie, J. & Pelletier, J. Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing. Genome Med. 7, 93 (2015).PubMed 
PubMed Central 

Google Scholar 
106.Chu, V. T. et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33, 543–548 (2015).CAS 
PubMed 

Google Scholar 
107.Yu, C. et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell 16, 142–147 (2015).CAS 
PubMed 
PubMed Central 

Google Scholar 
108.Maruyama, T. et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33, 538–542 (2015).CAS 
PubMed 
PubMed Central 

Google Scholar 
109.Pinder, J., Salsman, J. & Dellaire, G. Nuclear domain ‘knock-in’ screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing. Nucleic Acids Res. 43, 9379–9392 (2015).CAS 
PubMed 
PubMed Central 

Google Scholar 
110.Song, J. et al. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat. Commun. 7, 10548 (2016).CAS 
PubMed 
PubMed Central 

Google Scholar 
111.Canny, M. D. et al. Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency. Nat. Biotechnol. 36, 95–102 (2018).CAS 
PubMed 

Google Scholar 
112.Charpentier, M. et al. CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair. Nat. Commun. 9, 1133 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
113.Nambiar, T. S. et al. Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant. Nat. Commun. 10, 3395 (2019).PubMed 
PubMed Central 

Google Scholar 
114.Cullot, G. et al. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat. Commun. 10, 1136 (2019).PubMed 
PubMed Central 

Google Scholar 
115.Ihry, R. J. et al. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat. Med. 24, 939–946 (2018).CAS 
PubMed 

Google Scholar 
116.Haapaniemi, E., Botla, S., Persson, J., Schmierer, B. & Taipale, J. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927–930 (2018).CAS 
PubMed 

Google Scholar 
117.Paquet, D. et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533, 125–129 (2016).CAS 
PubMed 

Google Scholar 
118.Renaud, J.-B. et al. Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Rep. 14, 2263–2272 (2016).CAS 
PubMed 

Google Scholar 
119.Savic, N. et al. Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. Elife 7, e33761 (2018).PubMed 
PubMed Central 

Google Scholar 
120.Aird, E. J., Lovendahl, K. N., St Martin, A., Harris, R. S. & Gordon, W. R. Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Commun. Biol 1, 54 (2018).
Google Scholar 
121.Carlson-Stevermer, J. et al. Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing. Nat. Commun. 8, 1711 (2017).PubMed 
PubMed Central 

Google Scholar 
122.Nishiyama, J., Mikuni, T. & Yasuda, R. Virus-mediated genome editing via homology-directed repair in mitotic and postmitotic cells in mammalian brain. Neuron 96, 755–768.e5 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
123.Cebrian-Serrano, A. & Davies, B. CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Mamm. Genome 28, 247–261 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
124.Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).PubMed 
PubMed Central 

Google Scholar 
125.Hirano, S., Nishimasu, H., Ishitani, R. & Nureki, O. Structural basis for the altered PAM specificities of engineered CRISPR-Cas9. Mol. Cell 61, 886–894 (2016).CAS 
PubMed 

Google Scholar 
126.Kleinstiver, B. P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).CAS 
PubMed 
PubMed Central 

Google Scholar 
127.Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
128.Kim, H. K. et al. High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells. Nat. Biomed. Eng. 4, 111–124 (2020).CAS 
PubMed 

Google Scholar 
129.Nishimasu, H. et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361, 1259–1262 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
130.Miller, S. M. et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat. Biotechnol. 38, 471–481 (2020).CAS 
PubMed 

Google Scholar 
131.Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290–296 (2020).CAS 
PubMed 

Google Scholar 
132.Chatterjee, P. et al. A Cas9 with PAM recognition for adenine dinucleotides. Nat. Commun. 11, 2474 (2020).CAS 
PubMed 
PubMed Central 

Google Scholar 
133.Chatterjee, P. et al. An engineered ScCas9 with broad PAM range and high specificity and activity. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0517-0 (2020).Article 
PubMed 

Google Scholar 
134.Kleinstiver, B. P. et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat. Biotechnol. 33, 1293–1298 (2015).CAS 
PubMed 
PubMed Central 

Google Scholar 
135.Gao, L. et al. Engineered Cpf1 variants with altered PAM specificities. Nat. Biotechnol. 35, 789–792 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
136.Kleinstiver, B. P. et al. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37, 276–282 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
137.Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).CAS 
PubMed 
PubMed Central 

Google Scholar 
138.Kleinstiver, B. P. et al. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat. Biotechnol. 34, 869–874 (2016).CAS 
PubMed 
PubMed Central 

Google Scholar 
139.Kim, D. et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat. Biotechnol. 34, 863–868 (2016).CAS 
PubMed 

Google Scholar 
140.Yan, W. X. et al. BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks. Nat. Commun. 8, 15058 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
141.Kim, H. K. et al. In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat. Methods 14, 153–159 (2017).CAS 
PubMed 

Google Scholar 
142.Amrani, N. et al. NmeCas9 is an intrinsically high-fidelity genome-editing platform. Genome Biol. 19, 214 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
143.Ran, F. A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380–1389 (2013).CAS 
PubMed 
PubMed Central 

Google Scholar 
144.Guilinger, J. P., Thompson, D. B. & Liu, D. R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32, 577–582 (2014).CAS 
PubMed 
PubMed Central 

Google Scholar 
145.Tsai, S. Q. et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32, 569–576 (2014).CAS 
PubMed 
PubMed Central 

Google Scholar 
146.Bitinaite, J., Wah, D. A., Aggarwal, A. K. & Schildkraut, I. FokI dimerization is required for DNA cleavage. Proc. Natl Acad. Sci. USA 95, 10570–10575 (1998).CAS 
PubMed 

Google Scholar 
147.Bolukbasi, M. F. et al. Orthogonal Cas9–Cas9 chimeras provide a versatile platform for genome editing. Nat. Commun. 9, 4856 (2018).PubMed 
PubMed Central 

Google Scholar 
148.Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).CAS 
PubMed 

Google Scholar 
149.Chen, J. S. et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550, 407–410 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
150.Kulcsár, P. I. et al. Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage. Genome Biol. 18, 190 (2017).PubMed 
PubMed Central 

Google Scholar 
151.Casini, A. et al. A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat. Biotechnol. 36, 265–271 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
152.Lee, J. K. et al. Directed evolution of CRISPR-Cas9 to increase its specificity. Nat. Commun. 9, 3048 (2018).PubMed 
PubMed Central 

Google Scholar 
153.Vakulskas, C. A. et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 24, 1216–1224 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
154.Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).CAS 
PubMed 

Google Scholar 
155.Kim, D. et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 12, 237–243 (2015).CAS 
PubMed 

Google Scholar 
156.Zuris, J. A. et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33, 73–80 (2015).CAS 

Google Scholar 
157.Wang, M. et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc. Natl Acad. Sci. USA 113, 2868–2873 (2016).CAS 

Google Scholar 
158.Rees, H. A. et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat. Commun. 8, 15790 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
159.Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. & Joung, J. K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279–284 (2014).CAS 
PubMed 
PubMed Central 

Google Scholar 
160.Kocak, D. D. et al. Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat. Biotechnol. 37, 657–666 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
161.Kim, N. et al. Prediction of the sequence-specific cleavage activity of Cas9 variants. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0537-9 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
162.Kim, S., Bae, T., Hwang, J. & Kim, J.-S. Rescue of high-specificity Cas9 variants using sgRNAs with matched 5′ nucleotides. Genome Biol. 18, 218 (2017).PubMed 
PubMed Central 

Google Scholar 
163.Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).PubMed 

Google Scholar 
164.Molla, K. A. & Yang, Y. CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends Biotechnol. 37, 1121–1142 (2019).CAS 
PubMed 

Google Scholar 
165.Yang, B., Yang, L. & Chen, J. Development and application of base editors. CRISPR J. 2, 91–104 (2019).PubMed 

Google Scholar 
166.Hess, G. T., Tycko, J., Yao, D. & Bassik, M. C. Methods and applications of CRISPR-mediated base editing in eukaryotic genomes. Mol. Cell 68, 26–43 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
167.Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862–D868 (2016). (D1).CAS 
PubMed 
PubMed Central 

Google Scholar 
168.Liu, Z. et al. Highly efficient RNA-guided base editing in rabbit. Nat. Commun. 9, 2717 (2018).PubMed 
PubMed Central 

Google Scholar 
169.Zafra, M. P. et al. Optimized base editors enable efficient editing in cells, organoids and mice. Nat. Biotechnol. 36, 888–893 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
170.Villiger, L. et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 24, 1519–1525 (2018).CAS 
PubMed 

Google Scholar 
171.Zhang, Y. et al. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nat. Commun. 8, 118 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
172.Li, Q. et al. CRISPR-Cas9-mediated base-editing screening in mice identifies DND1 amino acids that are critical for primordial germ cell development. Nat. Cell Biol. 20, 1315–1325 (2018).CAS 
PubMed 

Google Scholar 
173.Yeh, W.-H., Chiang, H., Rees, H. A., Edge, A. S. B. & Liu, D. R. In vivo base editing of post-mitotic sensory cells. Nat. Commun. 9, 2184 (2018).PubMed 
PubMed Central 

Google Scholar 
174.Zeng, Y. et al. Correction of the Marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos. Mol. Ther. 26, 2631–2637 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
175.Li, G. et al. Highly efficient and precise base editing in discarded human tripronuclear embryos. Protein Cell 8, 776–779 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
176.Zhou, C. et al. Highly efficient base editing in human tripronuclear zygotes. Protein Cell 8, 772–775 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
177.Liang, P. et al. Correction of β-thalassemia mutant by base editor in human embryos. Protein Cell 8, 811–822 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
178.Zong, Y. et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35, 438–440 (2017).CAS 
PubMed 

Google Scholar 
179.Shimatani, Z. et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 35, 441–443 (2017).CAS 

Google Scholar 
180.Levy, J. M. et al. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 4, 97–110 (2020).CAS 
PubMed 

Google Scholar 
181.Sasaguri, H. et al. Introduction of pathogenic mutations into the mouse Psen1 gene by Base Editor and Target-AID. Nat. Commun. 9, 2892 (2018).PubMed 
PubMed Central 

Google Scholar 
182.Lu, Y. & Zhu, J.-K. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol. Plant 10, 523–525 (2017).CAS 
PubMed 

Google Scholar 
183.Park, D.-S. et al. Targeted base editing via RNA-guided cytidine deaminases in Xenopus laevis embryos. Mol. Cells 40, 823–827 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
184.Liang, P. et al. Effective gene editing by high-fidelity base editor 2 in mouse zygotes. Protein Cell 8, 601–611 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
185.Xie, J. et al. Efficient base editing for multiple genes and loci in pigs using base editors. Nat. Commun. 10, 2852 (2019).PubMed 
PubMed Central 

Google Scholar 
186.Chadwick, A. C., Wang, X. & Musunuru, K. In vivo base editing of PCSK9 (proprotein convertase subtilisin/kexin type 9) as a therapeutic alternative to genome editing. Arterioscler. Thromb. Vasc. Biol. 37, 1741–1747 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
187.Rossidis, A. C. et al. In utero CRISPR-mediated therapeutic editing of metabolic genes. Nat. Med. 24, 1513–1518 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
188.Tang, W. & Liu, D. R. Rewritable multi-event analog recording in bacterial and mammalian cells. Science 360, eaap8992 (2018).189.Farzadfard, F. et al. Single-nucleotide-resolution computing and memory in living cells. Mol. Cell 75, 769–780.e4 (2019).CAS 
PubMed 

Google Scholar 
190.Kim, K. et al. Highly efficient RNA-guided base editing in mouse embryos. Nat. Biotechnol. 35, 435–437 (2017).CAS 
PubMed 

Google Scholar 
191.Kuscu, C. et al. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat. Methods 14, 710–712 (2017).CAS 
PubMed 

Google Scholar 
192.Billon, P. et al. CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of stop codons. Mol. Cell 67, 1068–1079.e4 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
193.Liu, Z. et al. Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nat. Commun. 9, 2338 (2018).PubMed 
PubMed Central 

Google Scholar 
194.Tanaka, S. et al. In vivo targeted single-nucleotide editing in zebrafish. Sci. Rep. 8, 11423 (2018).PubMed 
PubMed Central 

Google Scholar 
195.Wu, Y. et al. Increasing cytosine base editing scope and efficiency with engineered Cas9-PmCDA1 fusions and the modified sgRNA in rice. Front. Genet. 10, 379 (2019).PubMed 
PubMed Central 

Google Scholar 
196.Qin, L. et al. High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system. Plant Biotechnol. J. 18, 45–56 (2020).CAS 
PubMed 

Google Scholar 
197.Ren, B. et al. A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in rice. Sci. China Life Sci. 60, 516–519 (2017).PubMed 

Google Scholar 
198.Chen, W. et al. CRISPR/Cas9-based genome editing in Pseudomonas aeruginosa and cytidine deaminase-mediated base editing in Pseudomonas species. iScience 6, 222–231 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
199.Chen, Y. et al. CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis. Sci. China Life Sci. 60, 520–523 (2017).CAS 
PubMed 

Google Scholar 
200.Li, J., Sun, Y., Du, J., Zhao, Y. & Xia, L. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol. Plant 10, 526–529 (2017).CAS 
PubMed 

Google Scholar 
201.Lee, H. K. et al. Simultaneous targeting of linked loci in mouse embryos using base editing. Sci. Rep. 9, 1662 (2019).PubMed 
PubMed Central 

Google Scholar 
202.Li, Y. et al. Programmable single and multiplex base-editing in Bombyx mori using RNA-guided cytidine deaminases. G3 (Bethesda) 8, 1701–1709 (2018).CAS 

Google Scholar 
203.Gu, T. et al. Highly efficient base editing in Staphylococcus aureus using an engineered CRISPR RNA-guided cytidine deaminase. Chem. Sci. 9, 3248–3253 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
204.Yuan, J. et al. Genetic modulation of RNA splicing with a CRISPR-guided cytidine deaminase. Mol. Cell 72, 380–394.e7 (2018).CAS 
PubMed 

Google Scholar 
205.Hua, K., Tao, X. & Zhu, J.-K. Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnol. J. 17, 499–504 (2019).PubMed 

Google Scholar 
206.Ren, B. et al. Cas9-NG greatly expands the targeting scope of the genome-editing toolkit by recognizing NG and other atypical PAMs in rice. Mol. Plant 12, 1015–1026 (2019).CAS 
PubMed 

Google Scholar 
207.Ryu, S.-M. et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat. Biotechnol. 36, 536–539 (2018).CAS 
PubMed 

Google Scholar 
208.Qin, W. et al. Precise A•T to G•C base editing in the zebrafish genome. BMC Biol. 16, 139 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
209.Li, C. et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol. 19, 59 (2018).PubMed 
PubMed Central 

Google Scholar 
210.Liang, P. et al. Effective and precise adenine base editing in mouse zygotes. Protein Cell 9, 808–813 (2018).PubMed 
PubMed Central 

Google Scholar 
211.Ma, Y. et al. Highly efficient and precise base editing by engineered dCas9-guide tRNA adenosine deaminase in rats. Cell Discov. 4, 39 (2018).PubMed 
PubMed Central 

Google Scholar 
212.Kang, B.-C. et al. Precision genome engineering through adenine base editing in plants. Nat. Plants 4, 427–431 (2018).CAS 
PubMed 

Google Scholar 
213.Yang, L. et al. Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein Cell 9, 814–819 (2018).PubMed 
PubMed Central 

Google Scholar 
214.Hua, K., Tao, X., Yuan, F., Wang, D. & Zhu, J.-K. Precise A·T to G·C base editing in the rice genome. Mol. Plant 11, 627–630 (2018).CAS 
PubMed 

Google Scholar 
215.Song, C.-Q. et al. Adenine base editing in an adult mouse model of tyrosinaemia. Nat. Biomed. Eng. 4, 125–130 (2020).CAS 
PubMed 

Google Scholar 
216.Lee, C. et al. CRISPR-Pass: gene rescue of nonsense mutations using adenine base editors. Mol. Ther. 27, 1364–1371 (2019).CAS 
PubMed 

Google Scholar 
217.Yan, F. et al. Highly efficient A·T to G·C base editing by Cas9n-guided tRNA adenosine deaminase in rice. Mol. Plant 11, 631–634 (2018).CAS 
PubMed 

Google Scholar 
218.Komor, A. C. et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T: Abase editors with higher efficiency and product purity. Sci. Adv. 3, eaao4774 (2017).PubMed 
PubMed Central 

Google Scholar 
219.Wood, R. D. DNA repair in eukaryotes. Annu. Rev. Biochem. 65, 135–167 (1996).CAS 
PubMed 

Google Scholar 
220.Di Noia, J. & Neuberger, M. S. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 419, 43–48 (2002).PubMed 

Google Scholar 
221.Radany, E. H. et al. Increased spontaneous mutation frequency in human cells expressing the phage PBS2-encoded inhibitor of uracil-DNA glycosylase. Mutat. Res. 461, 41–58 (2000).CAS 
PubMed 

Google Scholar 
222.Savva, R., McAuley-Hecht, K., Brown, T. & Pearl, L. The structural basis of specific base-excision repair by uracil-DNA glycosylase. Nature 373, 487–493 (1995).CAS 
PubMed 

Google Scholar 
223.Mol, C. D. et al. Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis. Cell 80, 869–878 (1995).CAS 
PubMed 

Google Scholar 
224.Wang, L. et al. Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. Cell Res. 27, 1289–1292 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
225.Lau, A. Y., Wyatt, M. D., Glassner, B. J., Samson, L. D. & Ellenberger, T. Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proc. Natl Acad. Sci. USA 97, 13573–13578 (2000).CAS 
PubMed 

Google Scholar 
226.Koblan, L. W. et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843–846 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
227.Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0453-z (2020).228.Gaudelli, N. M. et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0491-6 (2020).229.Grünewald, J. et al. CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat. Biotechnol. 37, 1041–1048 (2019).PubMed 
PubMed Central 

Google Scholar 
230.Rallapalli, K. L., Komor, A. C. & Paesani, F. Computer simulations explain mutation-induced effects on the DNA editing by adenine base editors. Sci. Adv. 6, eaaz2309 (2020).PubMed 
PubMed Central 

Google Scholar 
231.Karvelis, T. et al. PAM recognition by miniature CRISPR-Cas12f nuclease triggers programmable double-stranded DNA cleavage. Nuc. Acids. Res. 48, 5016–5023 (2019).
Google Scholar 
232.Kweon, J. et al. A CRISPR-based base-editing screen for the functional assessment of BRCA1 variants. Oncogene 39, 30–35 (2020).CAS 
PubMed 

Google Scholar 
233.Jun, S., Lim, H., Chun, H., Lee, J. H. & Bang, D. Single-cell analysis of a mutant library generated using CRISPR-guided deaminase in human melanoma cells. Commun. Biol 3, 154 (2020).CAS 

Google Scholar 
234.Després, P. C., Dubé, A. K., Seki, M., Yachie, N. & Landry, C. R. Perturbing proteomes at single residue resolution using base editing. Nat. Commun. 11, 1871 (2020).PubMed 
PubMed Central 

Google Scholar 
235.Thuronyi, B. W. et al. Continuous evolution of base editors with expanded target compatibility and improved activity. Nat. Biotechnol. 37, 1070–1079 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
236.Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371–376 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
237.Huang, T. P. et al. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat. Biotechnol. 37, 626–631 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
238.Li, X. et al. Base editing with a Cpf1-cytidine deaminase fusion. Nat. Biotechnol. 36, 324–327 (2018).CAS 
PubMed 

Google Scholar 
239.Tan, J., Zhang, F., Karcher, D. & Bock, R. Engineering of high-precision base editors for site-specific single nucleotide replacement. Nat. Commun. 10, 439 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
240.Tan, J., Zhang, F., Karcher, D. & Bock, R. Expanding the genome-targeting scope and the site selectivity of high-precision base editors. Nat. Commun. 11, 629 (2020).CAS 
PubMed 
PubMed Central 

Google Scholar 
241.Oakes, B. L. et al. CRISPR-Cas9 circular permutants as programmable scaffolds for genome modification. Cell 176, 254–267.e16 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
242.Wang, Y., Zhou, L., Liu, N. & Yao, S. BE-PIGS: a base-editing tool with deaminases inlaid into Cas9 PI domain significantly expanded the editing scope. Signal Transduct. Target. Ther. 4, 36 (2019).PubMed 
PubMed Central 

Google Scholar 
243.Jiang, W. et al. BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity. Cell Res. 28, 855–861 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
244.Hess, G. T. et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat. Methods 13, 1036–1042 (2016).CAS 
PubMed 
PubMed Central 

Google Scholar 
245.McCann, J. L., Salamango, D. J., Law, E. K., Brown, W. L. & Harris, R. S. MagnEdit—interacting factors that recruit DNA-editing enzymes to single base targets. Life Sci. Alliance 3, e201900606 (2020).PubMed 
PubMed Central 

Google Scholar 
246.Yu, Y. et al. Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity. Nat. Commun. 11, 2052 (2020).CAS 
PubMed 
PubMed Central 

Google Scholar 
247.Zhong, Z. et al. Improving plant genome editing with high-fidelity xCas9 and non-canonical PAM-targeting Cas9-NG. Mol. Plant 12, 1027–1036 (2019).CAS 
PubMed 

Google Scholar 
248.Endo, M. et al. Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM. Nat. Plants 5, 14–17 (2019).CAS 
PubMed 

Google Scholar 
249.Shevidi, S., Uchida, A., Schudrowitz, N., Wessel, G. M. & Yajima, M. Single nucleotide editing without DNA cleavage using CRISPR/Cas9-deaminase in the sea urchin embryo. Dev. Dyn. 246, 1036–1046 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
250.Banno, S., Nishida, K., Arazoe, T., Mitsunobu, H. & Kondo, A. Deaminase-mediated multiplex genome editing in Escherichia coli. Nat. Microbiol. 3, 423–429 (2018).CAS 
PubMed 

Google Scholar 
251.Xu, W. et al. Multiplex nucleotide editing by high-fidelity Cas9 variants with improved efficiency in rice. BMC Plant Biol. 19, 511 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
252.Liu, L. D. et al. Intrinsic nucleotide preference of diversifying base editors guides antibody ex vivo affinity maturation. Cell Rep. 25, 884–892.e3 (2018).CAS 
PubMed 

Google Scholar 
253.Wang, X. et al. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nat. Biotechnol. 36, 946–949 (2018).CAS 
PubMed 

Google Scholar 
254.Ren, B. et al. Improved base editor for efficiently inducing genetic variations in rice with CRISPR/Cas9-guided hyperactive hAID mutant. Mol. Plant 11, 623–626 (2018).CAS 
PubMed 

Google Scholar 
255.Liu, Z. et al. Improved base editor for efficient editing in GC contexts in rabbits with an optimized AID-Cas9 fusion. FASEB J. 33, 9210–9219 (2019).CAS 
PubMed 

Google Scholar 
256.Wang, Y. et al. MACBETH: multiplex automated Corynebacterium glutamicum base editing method. Metab. Eng. 47, 200–210 (2018).CAS 
PubMed 

Google Scholar 
257.Ma, Y. et al. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat. Methods 13, 1029–1035 (2016).CAS 
PubMed 

Google Scholar 
258.Gehrke, J. M. et al. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat. Biotechnol. 36, 977–982 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
259.Coelho, M. A. et al. BE-FLARE: a fluorescent reporter of base editing activity reveals editing characteristics of APOBEC3A and APOBEC3B. BMC Biol. 16, 150 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
260.Liu, Z. et al. Highly precise base editing with CC context-specificity using engineered human APOBEC3G-nCas9 fusions. Preprint at bioRxiv https://doi.org/10.1101/658351 (2019).261.Martin, A. S. et al. A panel of eGFP reporters for single base editing by APOBEC-Cas9 editosome complexes. Sci. Rep. 9, 497 (2019).PubMed 
PubMed Central 

Google Scholar 
262.St Martin, A. et al. A fluorescent reporter for quantification and enrichment of DNA editing by APOBEC-Cas9 or cleavage by Cas9 in living cells. Nucleic Acids Res. 46, e84 (2018).
Google Scholar 
263.Zhou, C. et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275–278 (2019).CAS 
PubMed 

Google Scholar 
264.Liu, Z. et al. Efficient and precise base editing in rabbits using human APOBEC3A-nCas9 fusions. Cell Discov. 5, 31 (2019).PubMed 
PubMed Central 

Google Scholar 
265.Zong, Y. et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat. Biotechnol. 36, 950–953 (2018).CAS 

Google Scholar 
266.Liu, Z. et al. Efficient base editing with high precision in rabbits using YFE-BE4max. Cell Death Dis. 11, 36 (2020).CAS 
PubMed 
PubMed Central 

Google Scholar 
267.Zuo, E. et al. A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects. Nat. Methods https://doi.org/10.1038/s41592-020-0832-x (2020).268.Sancar, A. DNA excision repair. Annu. Rev. Biochem. 65, 43–81 (1996).CAS 
PubMed 

Google Scholar 
269.Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).CAS 
PubMed 
PubMed Central 

Google Scholar 
270.Pattanayak, V. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31, 839–843 (2013).CAS 
PubMed 
PubMed Central 

Google Scholar 
271.Kim, D. et al. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat. Biotechnol. 35, 475–480 (2017).CAS 
PubMed 

Google Scholar 
272.Liang, P. et al. Genome-wide profiling of adenine base editor specificity by EndoV-seq. Nat. Commun. 10, 67 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
273.Kim, D., Kim, D. E., Lee, G., Cho, S.-I. & Kim, J.-S. Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nat. Biotechnol. 37, 430–435 (2019).CAS 
PubMed 

Google Scholar 
274.Tsai, S. Q. et al. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat. Methods 14, 607–614 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
275.Akcakaya, P. et al. In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature 561, 416–419 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
276.Hong, R., Ma, S. & Wang, F. Improving the specificity of adenine base editor using high-fidelity Cas9. Preprint at bioRxiv https://doi.org/10.1101/712109 (2019).277.Doman, J. L., Raguram, A., Newby, G. A. & Liu, D. R. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat. Biotechnol. 38, 620–628 (2020).CAS 
PubMed 

Google Scholar 
278.Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289–292 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
279.Jin, S. et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292–295 (2019).CAS 
PubMed 

Google Scholar 
280.McGrath, E. et al. Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing. Nat. Commun. 10, 5353 (2019).PubMed 
PubMed Central 

Google Scholar 
281.Grünewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433–437 (2019).PubMed 
PubMed Central 

Google Scholar 
282.Rees, H. A., Wilson, C., Doman, J. L. & Liu, D. R. Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci. Adv. 5, eaax5717 (2019).PubMed 
PubMed Central 

Google Scholar 
283.Hwang, G.-H. et al. Web-based design and analysis tools for CRISPR base editing. BMC Bioinforma. 19, 542 (2018).CAS 

Google Scholar 
284.Dandage, R., Després, P. C., Yachie, N. & Landry, C. R. beditor: a computational workflow for designing libraries of guide RNAs for CRISPR-mediated base editing. Genetics 212, 377–385 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
285.Arbab, M. et al. Determinants of base editing outcomes from target library analysis and machine learning. Cell (in the press).286.Sakata, R. C. et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0509-0 (2020).287.Li, C. et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0393-7 (2020).288.Zhang, X. et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0527-y (2020).289.Grünewald, J. et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0535-y (2020).290.Davis, K. M., Pattanayak, V., Thompson, D. B., Zuris, J. A. & Liu, D. R. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat. Chem. Biol. 11, 316–318 (2015).CAS 
PubMed 
PubMed Central 

Google Scholar 
291.Gao, X. et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 553, 217–221 (2018).CAS 

Google Scholar 
292.Zetsche, B., Volz, S. E. & Zhang, F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33, 139–142 (2015).CAS 
PubMed 

Google Scholar 
293.Liu, K. I. et al. A chemical-inducible CRISPR-Cas9 system for rapid control of genome editing. Nat. Chem. Biol. 12, 980–987 (2016).CAS 
PubMed 

Google Scholar 
294.Veillet, F. et al. Expanding the CRISPR toolbox in P. patens using SpCas9-NG variant and application for gene and base editing in Solanaceae crops. Int. J. Mol. Sci. 21, 1024 (2020).295.Halperin, S. O. et al. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature 560, 248–252 (2018).CAS 
PubMed 

Google Scholar 
296.Tang, W., Hu, J. H. & Liu, D. R. Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation. Nat. Commun. 8, 15939 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
297.Kundert, K. et al. Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs. Nat. Commun. 10, 2127 (2019).PubMed 
PubMed Central 

Google Scholar 
298.Klompe, S. E., Vo, P. L. H., Halpin-Healy, T. S. & Sternberg, S. H. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 571, 219–225 (2019).CAS 
PubMed 

Google Scholar 
299.Strecker, J. et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48–53 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
300.Chen, S. P. & Wang, H. H. An engineered Cas-transposon system for programmable and site-directed DNA transpositions. CRISPR J. 2, 376–394 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
301.Chaikind, B., Bessen, J. L., Thompson, D. B., Hu, J. H. & Liu, D. R. A programmable Cas9-serine recombinase fusion protein that operates on DNA sequences in mammalian cells. Nucleic Acids Res. 44, 9758–9770 (2016).CAS 
PubMed 
PubMed Central 

Google Scholar 
302.Faure, G. et al. CRISPR-Cas in mobile genetic elements: counter-defence and beyond. Nat. Rev. Microbiol. 17, 513–525 (2019).CAS 
PubMed 

Google Scholar 
303.Peters, J. E., Makarova, K. S., Shmakov, S. & Koonin, E. V. Recruitment of CRISPR-Cas systems by Tn7-like transposons. Proc. Natl Acad. Sci. USA 114, E7358–E7366 (2017).CAS 
PubMed 

Google Scholar 
304.Koonin, E. V. & Makarova, K. S. Mobile genetic elements and evolution of CRISPR-Cas systems: all the way there and back. Genome Biol. Evol. 9, 2812–2825 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
305.Shmakov, S. et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat. Rev. Microbiol. 15, 169–182 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
306.Krupovic, M., Béguin, P. & Koonin, E. V. Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery. Curr. Opin. Microbiol. 38, 36–43 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
307.Makarova, K. S. et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13, 722–736 (2015).CAS 
PubMed 
PubMed Central 

Google Scholar 
308.Haren, L., Ton-Hoang, B. & Chandler, M. Integrating DNA: transposases and retroviral integrases. Annu. Rev. Microbiol. 53, 245–281 (1999).CAS 
PubMed 

Google Scholar 
309.Peters, J. E. & Craig, N. L. Tn7: smarter than we thought. Nat. Rev. Mol. Cell Biol. 2, 806–814 (2001).CAS 
PubMed 

Google Scholar 
310.Halpin-Healy, T. S., Klompe, S. E., Sternberg, S. H. & Fernández, I. S. Structural basis of DNA targeting by a transposon-encoded CRISPR-Cas system. Nature 577, 271–274 (2020).CAS 
PubMed 

Google Scholar 
311.May, E. W. & Craig, N. L. Switching from cut-and-paste to replicative Tn7 transposition. Science 272, 401–404 (1996).CAS 
PubMed 

Google Scholar 
312.Sarkar, I., Hauber, I., Hauber, J. & Buchholz, F. HIV-1 proviral DNA excision using an evolved recombinase. Science 316, 1912–1915 (2007).CAS 
PubMed 

Google Scholar 
313.Karpinski, J. et al. Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity. Nat. Biotechnol. 34, 401–409 (2016).CAS 
PubMed 

Google Scholar 
314.Bessen, J. L. et al. High-resolution specificity profiling and off-target prediction for site-specific DNA recombinases. Nat. Commun. 10, 1937 (2019).PubMed 
PubMed Central 

Google Scholar 
315.Liang, X., Potter, J., Kumar, S., Ravinder, N. & Chesnut, J. D. Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA. J. Biotechnol. 241, 136–146 (2017).CAS 
PubMed 

Google Scholar 
316.Sürün, D. et al. Efficient generation and correction of mutations in human iPS cells utilizing mRNAs of CRISPR base editors and prime editors. Genes (Basel) 11, E511 (2020).317.Liu, Y. et al. Efficient generation of mouse models with the prime editing system. Cell Discov. 6, 27 (2020).CAS 
PubMed 
PubMed Central 

Google Scholar 
318.Lin, Q. et al. Prime genome editing in rice and wheat. Nat. Biotechnol. 38, 582–585 (2020).CAS 
PubMed 

Google Scholar 
319.Tang, X. et al. Plant prime editors enable precise gene editing in rice cells. Mol. Plant 13, 667–670 (2020).CAS 
PubMed 

Google Scholar 
320.Li, H., Li, J., Chen, J., Yan, L. & Xia, L. Precise modifications of both exogenous and endogenous genes in rice by prime editing. Mol. Plant 13, 671–674 (2020).CAS 
PubMed 

Google Scholar 
321.Xu, W. et al. Versatile nucleotides substitution in plant using an improved prime editing system. Mol. Plant 13, 675–678 (2020).CAS 
PubMed 

Google Scholar 
322.Yan, J., Cirincione, A. & Adamson, B. Prime editing: precision genome editing by reverse transcription. Mol. Cell 77, 210–212 (2020).CAS 
PubMed 

Google Scholar 

Read More

Show More

Related Articles

Leave a Reply

Your email address will not be published.

Back to top button
Close
Close